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Preface 

The monograph text is based on lectures delivered by author during many 
years for students of Applied Iechanics Department of Bauman Ioscow 
State Technical University. The monograph includes also analitical results of 
scientific research obtained in collaboration with industry. 

Progress in developing new equipment has called for a better understand­
ing of the physical peculiarities pertaining to the action of designed structures 
in real conditions. This is necessary for increasing the accuracy of the analysis 
and making these structures more reliable. 

It has been found that classical determined perturbations are not principal 
and that determinism-based methods of classical mechanics prove insufficient 
for understanding and explaining physical effects that arise at the operation 
of instruments located on moving objects, the vibration of rocket engines, the 
motion of a vehicle, and the action of wind and seismic loads. Therefore the 
necessity arose for devising a new physical model to analyze these dynamic 
processes and, in particular, for creating a new mathematical apparatus that 
would allow us to take into account non-deterministic external excitations. 
The theory of random processes that had been developed well enough as 
applied to problems of radio engineering and automatic control, where the 
effect produced by random excitations appeared to be commensurable with 
that of deterministic excitations and where the ignoring of the random ex­
citations would bring about incorrect results, became such an apparatus. 
Therefore the theory of random processes began to be used for the solution 
of specific problems relevant to radio engineering, in particular, earlier than 
for the analysis of mechanical systems where the random excitations were 
frequently being ignored. In many applied problems such ignoring of random 
excitations, the more so really small ones, is quite allowable and their solu­
tion does not require the use of statistical mechanics. If, however, random 
excitations are comparable (in probability characteristics) with known forces 
and especially when only random excitations act on the system, the classical 
methods of analysis become unacceptable and the obtainment of numerical 
results demands the use probability-based methods. Therefore introducing 
statistical methods of analysis in practical design is a necessary condition of 
making reliable structures. 
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It is impossible to increase the reliability of new equipment designed for 
operation in extreme conditions and meeting the most stringent requirements 
to operation accuracy and reliability, and at the same time to achieve a 
reduction in the material input per unit of consumption, without the use of 
statistical mechanics. 

The first four chapters are devoted to the fundamentals of the theory of 
probabilities and random processes. Consideration is given to random quan­
tities and functions and their probability characteristics; probability density 
distribution functions; and mathematical expectations and variances. Dif­
ferent types of distribution laws encountered in practical problems are ex­
pounded. Non-stationary and stationary random processes that are of prac­
tical importance in analyzing the vibrations of mechanical systems are ex­
amined. Principal results of the special theory of stationary random func­
tions and the implementation of spectral presentation of stationary random 
functions at steady-state vibration analysis are described, and the theory of 
Markovian processes is discussed. 

Chapters 5 - 8 are concerned with the random vibrations of systems with 
a finite number of degrees of freedom and of systems with distributed param­
eters. The theory of random vibrations is presented similarly to the classical 
theory of vibrations that allows us to establish in the most obvious manner 
in what way these sections of mechanics (determined vibrations and ran­
dom vibrations) are related and where they differ. The methods of analyzing 
random vibrations presented in the textbook make it possible to investigate 
dynamic processes that arise in mechanical systems (Le. to determine the 
probabilistic characteristics of the generalized coordinates of a system and of 
their derivatives for a system with a finite number of degrees of freedom, and 
to obtain the probabilistic characteristics of the state of stress and strain of 
a system with distributed parameters). 

The ninth chapter deals with the fundamentals of the theory of reliability 
and analyzes numerical methods of determining the probability of no-failure 
operation of mechanical systems under a single or small number of loading 
cycles and at a confined time of the process. 

The use of methods of statistical mechanics in practical design becomes 
a possibility only when statistical information about random perturbations 
is available, but there are cases where we cannot obtain such information 
to the extent required for the design. In our presentation of the theoretical 
fundamentals of statistical mechanics we assume that the necessary informa­
tion about random perturbation is known. In engineering practice, however, 
the situation may be different due to a very large volume of experimental 
investigations involved that sometimes turns out to be unfeasible because of 
technical difficulties or inadequate financing. The problem of obtaining the 
probability characteristics of perturbations is much more difficult than that 
of finding a subsequent solution to equations of the state of a system. There­
fore this textbook contains a chapter expounding the theory and numerical 
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methods of analyzing problems of the dynamics of mechanical systems when 
the available information about random perturbations is insufficient for a 
design that uses statistical mechanics. 

Moscow, June 2002 Valery Svetlitsky 
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Introduction 

When investigating dynamic processes that arise, for example, in mechanical 
systems, we often have to deal with the analysis of possible actions, the nature 
of which is not completely clear to us . These actions can be caused by both 
external uncontrollable (random) excitations and uncontrollable variations in 
the geometry and parameters of a system. 

For instance, actions of this kind include the irregularities of a road 
or an airfield pavement that cause vibrations of objects moving on them 
(Fig. 0.1), the gasdynamic and technological misalignments of a jet engine 
thrust (Fig. 0.2), and the scatters of the parameters of amortization systems 
(Fig. 0.2). When these uncontrollable actions of external forces and scatters 
of the parameters of a structure do not produce any essential troubles in the 
behaviour of a system and can be neglected, we obtain a practically exact 
solution. This point of view is characteristic of classical mechanics and, in 
particular, of the classical theory of vibrations, where it is usual to assume 
that at the given initial conditions (known with certainty) and known forces 
for every instant of time there is a unique state of the system and their time 
sequence is developed in a uniquely determined "trajectory". It is common 
practice to call such one-to-one relationship between the state of the system 
and time as deterministic. A deterministic relationship between the state of 
a system and time completely excludes the presence of various uncontrollable 
actions in nature. The classical theory of vibrations is confined to determin­
istic processes, practically not focussing attention on the analysis of random 
processes. 

v -

a 

Fig. 0.1. 

v -
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Fig. 0.2. 

There was a period in the development of classical engineering when sci­
entists and designers considered randomness an annoying obstacle, which, 
theoretically, could be avoided by a more careful conduct of the experiment. 
They also believed that the scatters of the initial data and forces were of no 
important significance and could be made arbitrary small using more precise 
instruments. The microworld was the only domain where they admitted the 
true role of randomness (works of Maxwell and Bolzmann on the theory of 
gases), whereas in the macrouniverse it was regarded as a consequence of our 
superficial knowledge of the laws of nature. Laplace gave an exact wording to 
this approach: "An intelligent being that at each given instant would know 
all driving forces of nature and have a complete picture of its state could, pro­
vided his mind were able to make a sufficient analysis of these data, express 
by one equation both the motion ofthe world's largest bodies and that of the 
smallest atoms. Nothing would remain unknown to this creature capable of 
taking a simultaneous view of both past and future" (Laplace. The Analytical 
Theory of Probabilities). Some difficulties arise, however, when one tries to 
put this statement in practice. They are connected with the obtainment of 
information about the position of the bodies of a system and their velocities 
at a given instant of time. It is practically impossible to find out these pa­
rameters. For example, the motion of the molecules of a gas can be described 
by differential equations, but to solve them it is necessary to have the initial 
conditions at a given instant of time, i.e. we must in a trice get information 
on the position of the molecules in space, which is practicable only during its 
transmission at an infinite velocity, and this cannot be achieved, because no 
signals can be transmitted at a velocity greater than that of light. Therefore 
the problem of obtaining information about the position of the molecules 
takes on fundamental importance. Another tacitly used assumption to the 
effect that absolutely exact measurements are theoretically possible (we can 
obtain absolutely exact values of the molecules' coordinates and of their first 
derivatives) . This contradicts the Heisenberg uncertainty principle. Thus, it is 
in essence impossible to obtain accurate information on the initial state of the 
gas molecules, and hence we cannot predict the behaviour in time. A strictly 
one-to-one relationship between cause and effect requires continuous copying 
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of the surrounding world, which absolutely excludes the occurrence of a new, 
qualitatively different phenomenon. If it were really so, the evolution of the 
world with its continuous change and qualitative variation in life forms would 
be impossible. All this suggests that randomness is not a consequence of our 
ignorance but an objective reality. The Gauss principle of least constraint to 
derive which we use the methods developed for the analysis of probability 
problems can be a good example proving the reality of randomness. 

The Gauss principle of least constrain is formulated in the following way 
[12,431: the actual motion of a system under the action of forces and imposed 
boundary constraints without friction differs from motions being executed un­
der the same initial conditions by the property that for the actual motion the 
measure of a deviation from a free motion, Le. the constraint is a minimum. 
By the constraint at a given instant Gauss means a measure of deviation of a 
system moving under the action of external active forces (with due account of 
holonomic and nonholonomic constraints imposed on the system) from a free 
motion, which it would have since the considered instant under the action 
of the same external forces, if the constrains imposed on it were eliminated 
beginning from that instant. Let us first recall the mathematical formulation 
and the notation of this principle. Then we consider the positions of a ma­
terial point mass mi at the instants of time t and t + Llt (Fig. 0.3) . Now let 
us expand the function ri (t + Llt) in a series and confine ourselves by the 
square-law part of expansion 

(0.1) 

Fig. 0.3. 

The vector ri (t + Llt) characterizes the position of the mass mi with due ac­
count of the constraints imposed on its motion. If the constraints were absent, 
the position of the point at the instant t + Llt would be defined by a vector 
r~l) (t + Llt) , which can be presented within the third order infinitesimals as 

r~l) (t + Llt) = rF) (t) + r?) Llt + ~r~l) Llt2 , 
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(0.2) 

In the absence of constraints the equation of motion of the point takes the 
form 

(0.3) 

therefore we have 

(0.4) 

The distance between the positions of the point at the instant t + ..1t during 
the action of constraints and without them is equal to 

The vector ..1r i defines the deviation of a material point at its actual mo­
tion from the position in which it would find itself at free motion. For a 
measure of deviation of a point from its free motion Gauss takes a quantity 
Zi, proportional to the square of deviation l..1riI2, which is referred to as a 
"constraint" 

(0.6) 

For all points of the system we have 

(0.7) 

or in scalar form 

n [3 ( )2] 1 .. Pij 
Z = 2" ~ ~ mi Xij - mi 

.=1 3=1 

(0.8) 

where 

The Gauss principle is that at any instant of time the constraint for the 
actual motion of a system as compared with a kinematically possible motion 
has the least value 
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n 

L m ' 2(1) z = -'z, = min 2 ' . 
i=1 

(0.9) 

The idea of the measure of deviation of a system from a free motion in the 
form of the sum of quantities proportional to the squares of deviations of 
the material points of a system is closely connected with the works of Gauss 
on the theory of errors, in particular, with the method of the least squares 
allowing us to determine the unknown quantity with the least root-mean­
square error. The method of the least squares relevant to the analysis of 
random phenomena results in relationships similar to relationship (0.9). 

In the theory of the least squares the basic problem is formulated as 
follows: there are unknown functions Yi and their known values YiO, then the 
measurement errors are 

If YiO have different variances O'i, then the multipliers Pi, dependent on O'i are 
entered. Assuming that the mistakes 8i obey the normal law, the following 
theorem is proved. For the unknown Yi to have the most probable values, it 
is necessary that the expression 

k 

Z = LPi8; 
i=1 

take the minimal value, and this expression at 

mi 
Pi=-, 

2 

and k = n transforms into expression (0.9). 
Thrning back to the Gauss principle, we can formulate (with due account 

of the result adopted from the theory of errors and cited above) in terms 
of the theory of probabilities, namely, the true motion of a system differs 
from its kinematically possible one by having the greatest probability. The 
relation between the method of least squares and the Gauss principle of 
least constraint represents something more than a simple analogy, i.e. the 
difference between the actual motion of a body and its possible motion is 
probabilistic in character. The Gauss principle has an essential advantage 
over that of d'Alambert: it enables us to obtain the equations of motion 
of a system at any nonholonomic constraints. This means that the Gauss 
principle is the most general principle of mechanics and allows a probabilistic 
interpretation! In modern physics we have come to realize with the utmost 
clarity the irrefutable fact that randomness cannot be completely excluded 
from analysis and should be taken into account as a component of any theory. 

Not all researchers, however, have shared this point of view. Many physi­
cists and mechanics considered taking randomness into account a temporary 
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deviation from classical theories and believed that in the process of storing 
knowledge the role of randomness would be reduced to zero. According to 
them, a much better understanding of physical processes in the future will 
make it possible to explain the phenomena that seem random to us today 
as a manifestation of entirely deterministic processes now inaccessible to our 
mind. 

The proponents of the opposite viewpoint on randomness maintain that 
only the probability methods of analyzing the processes can give us a correct 
answer. In the opinion of the supporters of the probability interpretation 
of the laws of nature, classical mechanics is a particular case of statistical 
mechanics impossible to achieve in practice because, in fact, the exact value of 
initial conditions and forces cannot be found out not only in the microworld, 
but in the macrouniverse as well. 

There are also scientists who argue that determinism is a mathematical 
convention allowing us to simplify the analysis of many complex processes, 
in which we can limit our analysis to mere average values. 

x 

Fig. 0.4. 

Consider a ball (Fig. O.4) [11] moving in the direction x between two 
rigid walls positioned at a distance ± l from the origin of coordinates. Let 
us assume that at the initial instant of time the ball was in the origin of 
coordinates and obtained the velocity Xo under the action of an impulse 
of force. Theoretically, we can predict the subsequent motion of the ball 
and its exact position between the walls at any instant of time t (provided 
the sphere is producing a totally elastic impact on the walls) . This would 
make the motion of the ball completely deterministic. But in a real rather 
than theoretical set up the motion acquires a different pattern because it 
is impossible to determine the initial velocity with absolute accuracy. We 
know this velocity with a certain error Llxo, no matter how small it may be. 
Therefore the position of the ball (coordinate x) will also be determined with 
an error equal to 

Llx = Llxot, 

which at sufficiently large time will exceed the distance 2l between the walls. 
Henceforward we can only tell that the ball is somewhere between the walls 
- the answer that we can hardly call deterministic. 
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The considered points of view are diametrically opposite and have a mere 
philosophical value. In the applied context, none of the physical processes 
may be regarded as either strictly deterministic or completely random. As to 
what category a given specific process falls into, it depends entirely on the 
accuracy of the available initial data, on what final results we are after and 
on how accurate they must be. 

There are many applied problems that can be described by exact mathe­
matical relationships. Practically, we may consider them deterministic (e.g., 
the motion of a satellite in an orbit) . However, there is no less extensive class 
of physical processes that are obviously not deterministic in character, such as 
the vibrations of a vehicle at its motion on a road with random irregularities 
(Fig. 0.1 a), the vibrations of elastic systems under the action of a random 
wind load (Fig. 0.5), the launch of rockets at random misalignments of thrust 
(FigO.5), etc. In the presented examples the effect of the action of random 
excitations plays a rather fundamental and sometimes the determining role. 
That is why we must not neglect random excitations. The principal general 
properties of random processes are the uncertainty of expected behaviour 
for any single realization of a process and the obviously pronounced statisti­
cal characteristics of a set of a large number of realizations. Designers show 
less interest than philosophers and theoretical physicists for our world in the 
context of it being casual or cause-determined. The former are much more 
interested in finding reasonable solutions to applied problems they tackle. If 
a designer knows everything that is necessary for the solution of a problem, 
can estimate the influence of the initial data's scatter on the final result and 

/ 
/ 

-- / 
/ --

--
v --
-
--

~ 

Fig. 0.5. 
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establishes that this influence may be neglected, he uses methods of classical 
mechanics. If the uncertainty of the initial data or an indeterminacy in spec­
ifying forces that act on the system are great, he has to address himself to 
methods allowing him to eliminate this uncertainty, in particular, to methods 
of probability theory and statistical dynamics. The idea that some time in 
the future this uncertainty will be eliminated is a poor consolation for the 
designer at the given moment. 

One of the prejudices against the propagation of the probability methods 
of analyzing mechanical systems is connected with the impossibility of an un­
equivocal quantitative prediction of the system's behaviour as it can be done 
on the basis of the laws and methods of classical mechanics. Many researchers 
hold that the only kind of prediction having the right to be called scientific 
is an exact quantitative prediction of the future events. Some complain of 
the imperfection of statistical laws to the effect that they do not allow us to 
draw certain conclusions and make definite predictions concerning individual 
events. However, when it is required to predict results characterizing the be­
haviour of a large number of separate random events, statistical methods give 
more substantial information, and a prediction of the behaviour of a separate 
body based on these methods is as definite as that made using methods of 
classical mechanics. 

The possibility of repeated realization of a random event in practically ho­
mogeneous conditions is indispensable for applying probability theory meth­
ods. The use of probabilistic methods of investigation becomes meaningful 
only at mass events. When using probabilistic methods in design practice, the 
principal difficulty is that the probability characteristics of stochastic func­
tions can be obtained only given a large number of random process realiza­
tions. This can entail large technical difficulties in carrying out experiments 
or large economic expenses. In order to obtain the probability characteristics 
of random irregularities of a road or an airfield pavement (Fig. 0.1 b) we need 
a set of records of microprofiles of different sections of the road, and for each 
road (earth, Belgian pave, etc.) these records of microprofiles are different. 
Their obtainment is a very labour-consuming work. However, the process 
of accumulating statistical information about random perturbations goes on 
and therefore the role probabilistic methods becomes increasingly important. 

Today the correlation theory is one of the principal methods of analyzing 
random processes. It allows us to obtain similar probability characteristics 
of the output at known probability characteristics of the input. We empha­
size once again that these characteristics are meaningful as those of a set of 
processes and not of an individual one. If, for example, 1000 identical auto­
mobiles move at an equal speed on roads of the same type, it is possible to 
predict, on the average, how the given type of road (input) acts on this kind 
of automobile. For instance, we can determine the mathematical expectations 
and variances (output) in sections of the chassis frame. If only one automobile 
moves on the limited section of the road, it is impossible to obtain the proba-
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bility characteristics of the output (without additional assumptions). A single 
launch of a rocket illustrates the point even more convincingly {Fig. 0.2). 

During the motion along the guide random forces caused by the misalign­
ments of thrust (input) act on the rocket, therefore at the moment of leaving 
the guide it obtains random scatters (output) of an angle LlCPk and an angu­
lar velocity Ll<jJk. Using the correlation theory we can formally determine the 
mathematical expectations (or rather mean values) of the scatters (Llcpk and 
Ll<jJk) and their variances, but the reliability of these results is very small. 

In the rocket-launch example we deal with a more complex problem of 
taking into account the uncertainty of variation of thrust misalignments, 
because we do not know which of the possible random laws of thrust mis­
alignment variation will be realized at the given single launch. If 1000 rockets 
were launched, we could use the probability characteristics of the input (of 
thrust misalignments) and obtain the probability characteristics of the out­
put (LlCPk and Ll<jJk) for the whole series of launches. It cannot be done at a 
at a single launch, but we may assert that with an increase in the number of 
launches the obtained values of the output (Llcpk and Ll<jJk) approach, on the 
average, ever more closer their theoretical values. Usually, during the analysis 
of random processes in mechanical systems, in particular, of non-stationary 
processes it is tacitly implied (an assumption enabling us to use the math­
ematical apparatus of the theory of random processes) that the condition 
of making the process massive is carried out. As regards stationary random 
processes the acceptance of the ergodicity-of-the process hypothesis allows 
us to consider only one realization instead of a large number of realizations 
and to obtain information sufficient (within the framework of the correlation 
theory) to predict the behaviour of the system. This approach to the analysis 
of random processes appears to be quite sufficient for many applied problems. 
That is why the correlation theory has become so widespread. 

Having an algorithm making it possible to determine the probability of 
no-failure operation, we can increase this probability by changing the struc­
tural parameters of a system, i.e. to design a more reliable product. It does 
not always happen, however, that the probability estimations of quality prove 
acceptable. Not infrequently it is required that the warranted performance 
criteria of the process be satisfied. For example, during the launch of one 
rocket the need arises for it assuredly hitting the given area. The 0.9 proba­
bility estimate of such a hit, for instance, does not guarantee a success. 

Any estimation of a random process or of test outcomes by probability 
theory methods is not absolute and may have different interpretations de­
pending on the requirements to final results. In one of his poems M.G. Kendall 
[4] aptly depicts how varied viewpoints on the same final result can be. The 
poem is given in Appendix4. 

So, a designer should independently choose methods of analysis on the 
basis of available information about random perturbations. 



www.manaraa.com

1. Fundamentals of the Probability Theory 
and the Theory of Random Processes 

1.1 Brief Information on the Probability Theory 

1.1.1 Basic Concepts of the Probability Theory 

In many fields of technology we have to deal with special phenomena which 
are usually called random phenomena. Let us consider, for example, the pro­
cess of manufacturing parts of the same type. We may establish, that the 
dimensions of the parts will vary about a certain predetermined value. Since 
these deviations are of random nature, the measurements of the finish~d parts 
do not allow us to predict the dimensions of the next part. For large batches 
of the parts, however, dimensional deviations begin to follow certain laws, 
which are studied by a special mathematical discipline - the probability the-­
ory, that reflects the laws inherent in random events (phenomena) of a mass 
character. There are many monographs on the probability theory containing 
a detailed discussion of the basic concepts and methods of that theory as well 
as of the random functions theory. This chapter, therefore, introduces only 
those concepts and results related to the probability theory which have been 
used in the subsequent chapters of the book. One of the principal virtues of 
the probability theory, that enables us to use the latter effectively, for ex­
ample, in the mechanical structures design, is the possibility to estimating 
quantitatively such emotional concepts as "probably", "hardly probably", 
"highly probable" etc. We know, that in order to design a machine, an in­
strument or a flying vehicle, it is necessary to obtain the numerical values 
of its structures parameters and of its quality (serviceability) criteria includ­
ing the probability quality criteria. To compare structures according to the 
probability criteria we must know the numerical values of probabilities (for 
example, the probability of no-failure operation). The probability thE!ory and 
the sections devoted to the statistical mechanics of mechanical systems, based 
on this theory, allow us to accomplish all of this. 

Phenomena that either mayor may not occur, are referred to as random 
events. For example, an air gust, acting on a television tower (Fig. 1.1) is a 
random event. The event, that unavoidably occur, is called a certain event. 
An event, that definitely can not occur is called an impossible event. In order 
to establish whether some random event will happen or not, it is necessary 
to carry out an experiment or, as it usually said, to make a trial. 
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Investigations show, that events, random at a single trial, at a large num­
ber of trials (under invariable conditions of trial) begin to follow some non­
random laws, which have come to be known as probability laws. The number 
of event occurrences at trials is characterized by the frequency of an event W 
occurrence. The ratio of the number of trials n, at which the event occurred, 
to the total number of performed trials N is referred to as the frequency of 
event W. 

This implies, that the results of events in a series of trials are mutually 
independent (random events are called independent, if the occurrence or lack 
of one of them in no way affects the occurrence of another). 

The frequency of events is to some extent an inherent characteristic of 
a phenomenon. It is a random quantity, however, depending on a particular 
series of trials. At a very large number of trials the frequency W almost ceases 
to vary, approaching some quantity P, which is referred to as probability. 

It is worth noting, that the character of a frequency approaching the prob­
ability as the number of trials increases somewhat ·differs from the tend to a 
limit as it is understood in higher mathematics. When in higher mathematics 
we say that variable Xn tends to a constant limit a with an increase of n, we 
mean, that the difference IXn - al becomes less than any positive number c 
for all values n, beginning from some sufficiently large number. We cannot 
make such statement about the frequency of an event and its probability, 
because it is quite possible, that at a large number of trials the frequency of 
an event will deviate considerably from its probability. The more the num­
ber of' trials, however, the less probable is such pronounced deviation. The 
concept of convergence in probability is introduced in the probability theory, 
i.e. the random quantity Xn converges in probability to the quantity a as n 
increases, when the probability of an inequality IXn - al < c indefinitely ap­
proaches unity as n increases. This statement is the content of the Bernoulli 
theorem - "when the number of homogeneous independent trials increases 
indefinitely we may safely say, that the frequency of an event will differ from 
its probability as little as one likes". 

Therefore, if event A repeats a large number of times (N) and in so doing 
has an indication B in n cases, and the results of the events in this sequence 
are mutually independent, the probability of indication B occurrence is 

. n 
PCB) = hm N' 

N-"too 

Knowing the probability of an event, we may predict, without performing 
any trials, the frequency of its occurrence at a large number of trials. We may 
also state that the probability of an event is a measure of the possibility of 
its occurrence at one trial. 

The statistical definition of' a probability allows us to determine: 
1) The probability of a certain event (equal to unity); 
2) The probability of an impossible event (equal to zero); 
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3) The probability of an arbitrary random event A (equal to a positive 
number which is not exceeding a unity, i.e. 0 ~ P (A) ~ 1). 

If we have two events A and B, and the probability of event A does not 
depend on whether event B occurred or not, such two events are referred to 
as independent. Event A is termed dependent on event B, if the probability 
of event A varies depending on whether event B occurred or not. The prob­
ability of event A, calculated on condition that event B occurred, is called 
the conditional probability of event A and designated as P (AlB) 

Basic Probability Theorems 

1. The Probability Addition Theorem The probability of a sum of two 
incompatible events is equal to the sum of their probabilities, i.e. 

peA + B) = peA) + P(B). (1.1) 

2. The Probability Multiplication Theorem The probability of a 
product (coincidence) of two events A and B is equal to the product of event 
A probability by the conditional probability of event B, i.e. 

P(AB) = P(A)P(BIA). (1.2) 

The probability of a product of two events A and B can be expressed in 
terms of the event A conditional probability. In this case 

P (AB) = P (B) P (A IB) . 

The probability of the joint occurrence of two independent events is equal 
to the product of their probabilities, i.e. 

P (AB) = P (A) P (B) . (1.3) 

3. The Formula of Total Probability The corollary of the probabil­
ity addition theorem and the probability multiplication theorem taken to­
gether is a so-called formula of total probability. Let it be required to de­
termine the probability of an event A, which can occur together with one of 
the events Bj (j = 1, 2, ... , n) that form a complete group of incompatible 
events, termed hypotheses. Several events in the given trial form a group of 
events, if, as a result of trial, only one of them unavoidably occurs. As the 
hypotheses B j constitute a complete group, event A can appear only in a 
combination with any of these hypotheses, i.e. 

Since the hypotheses Bj are incompatible, the combinationsBjA are in­
compatible too. Consequently, applying the addition theorem to them, we 
get 
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n 

P(A) = LP(BjA). 
j=l 

Taking advantage of the multiplication theorem, we finally have for each 
of the terms in the right-hand side of the obtained relation 

n 

P(A) = LP(Bj)P(AIBj). (1.4) 
j=l 

The expression (1.4) is referred to as the formula of total probability. 
4. The Bayesian Formula (Theorem of Hypotheses) This for­

mula is a corollary of the multiplication theorem and the formula of to­
tal probability. Let there be a complete group of incompatible hypotheses 
Bj(j = 1, 2, ... , n). We know the probabilities of these hypotheses before 
trial. They are equal to P (Bj ). A trial has been performed resulting in the 
occurrence of an event A. The question arises: how should we change the 
probabilities of the hypotheses in connection with this occurrence? 

Let us apply the formula for conditional probability P (Bj IA) to each 
hypothesis and take advantage of the multiplication theorem 

It follows from the obtained relation that 

Using the formula for total probability, we finally get 

P(BjIA) = nP(BJ) P(AIBj ) 

L: P(Bj ) P(AIBj ) 
j=l 

1.2 The Distribution Function and the Probability 
Density of a Random Variable 

(1.5) 

The Distribution Function One of the principal concepts of the probabil­
ity theory is that of the random variable. A quantity will be called random, 
if, as a result of trial, it takes this or that value, unknown in advance. A 
random quantity can be discrete or continuous. A random variable will be 
completely defined from the probability point of view, if we know the prob­
ability of occurrence of each of the values, taken by the random variable. 
Such correspondence is referred to as a distribution law of a discrete random 
variable. The distribution law of a discrete random variable X, which will 
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take one of Xj(j = 1, 2, ... , n) possible values as a result of trial, can be 
presented as a table (or a row of distribution): 

Table 1.1. 

Knowing the row of a random discrete quantity distribution, we may 
obtain the function defining this distribution, which takes the form 

F(x) = L P(X = Xj)' (1.6) 
Xj<x 

The inequality Xj < x under the summation sign indicates, that the sum­
mation covers all values of Xj, which are smaller than x. The function F(x) is 
referred to as the distribution function of a random quantity x. When a vari­
able x goes through the possible value X, the function F(x) varies stepwise, 
and the magnitude of the jump is equal to the probability Pj of the value Xj 

occurrence. The incompatible events Xj form a complete group, therefore 

n 

F(x) = LPj = 1, 
j=l 

i.e. the distribution function can not exceed unity. 
For a continuous random quantity the probability of an event means the 

probability of an event X < x, where x is some current variable. In this case 
the probability P(X < x) is some function of x, which by analogy with a 
discrete random quantity is referred to as a distribution function: 

F(x)=P(X<X). (1. 7) 

Sometimes the function F (x) is called a distribution function or an inte­
gral distribution law. The distribution function is the most universal charac­
teristic of random quantities, both discrete and continuous. 

The distribution function should meet the condition 

0:::; F (x)) :::; 1. (1.8) 

It follows from the function F (x) definition (see (1.7)), that at any arbi­
trary large x the function F (x) can not exceed unity (as F (x) is a probability 
and the probability can not be more than unity) 

F(oo) = lim F(x) = 1. 
X-+OO 
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As the probability P (X < x) can not be smaller than zero, it follows from 
(1.7), that 

F(-oo) = lim F(x) = O. 
X-+-(X) 

F(x) 

x 

Fig.!.!. 

The approximate view of a distribution function for a continuous random 
quantity is shown in Fig. 1.1. When solving applied probability problems, we 
often find it necessary to determine the probabilities of a random variable 
X taking a value limited by a certain interval, for example, that of (a, b). 
For definiteness, let us agree to include the left end of the interval (a, b) in 
the latter, leaving its right end b outside it. Then, the fact that the random 
quantity X falls within the interval (a, b) is tantamount to the fulfillment of 
the inequality 

a:::; X < b. 

Let us express the probability of this event in terms of the random variable 
X distribution function. Let us consider three events: an event , consisting 
in that X < b; an event , consisting in that X < a; an event C, consisting in 
that a:::; X < b. 

As 

A = B+C, 

then from the probabilities addition theorem (1.1) we have 

P (X < b) = P (X < a) + P (a:::; X < b) 

or 

F (b) = F (a) + P (a:::; X < b) . 
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Therefore we finally get 

P(a:s: X < b) = F(b) - F(a). (1.9) 

Probability Density Let us consider a continuous random quantity X 
with a known continuous and differentiable distribution function F (x). Let 
us determine the probability of a random quantity falling within an interval 
(x, x + L1x) 

P (x < X < x + L1x) = F (x + L1x) - F (x) , (1.10) 

i.e. the probability P is the increment of the distribution functiOI\ in this 
section. It is clear, that the smaller L1x, the smaller the probability of X 
falling within the interval (x, x + L1x). Therefore the left-hand side of equality 
(1.10) may be replaced by 

L1P (x < X < ::r + L1x). 

Let us consider a ratio of a probability L1P to the length of an interval at 
L1x approaching zero 

1. L1P . F (x + L1x) - F (x) 
1m -= lun . 

Ll.x-+O L1x Llx-+O Llx 

Limiting ourselves to the linear part of the expansion F (x + L1x) in series 
we get 

dP = F' (x). 
dx 

Let us int.roduce the notat.ions 

F' (x) = f (x) , 

therefore 

dP = f(x) dx. 

(1.11) 

(1.12) 

The function f (x) is referred to as the continuous random variable X 
distribution density. It follows from (1.12) that 

x 

F(x) = J f(x) dx. (1.13) 

-00 

Letting the upper limit to approach infinity, we shall get 

00 

F(oo) = J f(x) dx = 1. 
-00 
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Fig. 1.2. 

The probability of the random quantity X being in the interval (Xl, X2) 
is equal to 

X2 

P (Xl::; X ::; X2) = / f (X) dx. ( 1.14) 

Xl 

An approximate form of the probability density function is shown in 
Fig. 1.2. The probability P (Xl::; X ::; X2) is numerically equal to the shaded 
area in Fig. 1.2. The distribution function of a random quantity and its prob­
ability density are different forms of the random quantity distribution law. 

1.3 Numerical Characteristics of Random Quantities 
and Their Principal Properties 

The distribution law given by the function F (x) or by the density of distribu­
tion f (x) is the exhaustive characteristic of a random variable (or a system 
of random variables). In practice, however, this exhaustive characteristic can 
not always be obtained owing to the limited nature of experimental results 
either because of the complexity of their acquisition or due to of their large 
cost. In such cases the approximate description of a random quantity obtained 
with the help of the minimum number of nonrandom characteristics reflecting 
the most essential features of distributions are used instead of distribution 
laws. It is often sufficient to point out only separate numerical parameters 
characterizing the essential properties of a random variable distribution, for 
example, a mean value, about which the possible values of a random quantity 
are clustered or a number describing the degree of the scatter of the random 
quantity about its mean value. Such nonrandom characteristics, which allow 
us to express the most essential features of a distribution in a condensed 
form, are referred to as the numerical characteristics of a random quantity. 
For example, such numerical (nonrandom) characteristics for a single random 
quantity X are its mathematical expectation and variance. 
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Expectation An arithmetical mean value is the simplest numerical char­
acteristic of a discrete random quantity X in the given series of trials 

1 N 
M [Xl = m~ = N LXi, (1.15) 

i=l 

where m:, is the mean value of a random quantity; N is the number of trials; 
Xi are the values of a random quantity, which it took at these trials; M is an 
averaging operation. 

In technical literature two more notations for an averaging operation are 
also used: { ) , E. Later on the notation M is taken for an averaging operation. 

If some values Xj, taken by a random variable X, repeat themselves nj 

times, it is possible to divide all values Xj into R groups and to present the 
expression (1.15) as 

(t nj = N), 
J=1 

(1.16) 

where Wj is the frequency (statistical probability Pj ) ofxj occurrence. There­
fore the mean value of a discrete random variable is equal to 

k 

m~1) = LXjPj , 

j=1 

The mathematical expectation for a continuous random variable X is 
equal to 

00 00 

M [xl = m", = f X dP = f X f (X) dx. (1.17) 

-00 -00 

Variance It is possible to take the mean value of any positive measure 
of a random quantity deviation from its mean value, for example, the square 
of a difference between the values of a random quantity and its mean value 
for characterizing a scatter of discrete random quantity values in the given 
series of trials 

k k 

[ a 2] I '" ni ( I )2 '" a 2 M X = D", = ~ N Xi - mx = ~ Xi . (;i = Xi - m~), (1.18) 
i=1 i=1 

where ;i = Xi - m~ is referred to as a centered random quantity. 
The quantity D~ is referred to as the statistical variance of a random 

quantity X. In practical calculations it is more convenient to use the quantity 
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a~ = "fi5[" (1.19) 

which is referred to as a statistical standard deviation. 
For a continuous random quantity the variance and the standard deviation 

are equal to 

00 

Dx=M[X2] j (x-mx)2f(x)dx 
-00 

(1.20) 

ax = yfi);,. 

It is possible to estimate the probability of a random quantity deviation 
from its mean value by some value a using the formula of P. Chebyshev 

Dx 
P(IX - mxl ~ a) <::: 2. 

a 
(1.21) 

Principal Properties of Expectation and Variance 
1. The expectation of a deterministic quantity is equal to this quantity 

00 00 

M[e] = j ef(x)dx=e j f(x)dx=e. 
-00 -00 

2. The expectation of a random quantity multiplied by a deterministic 
factor is 

00 

M [eX] = j exf (x) dx = em",. (1.22) 

-00 

3. The variance of a deterministic quantity C is zero 

00 00 

M[X2] = j(x-mx )2f(x)dX= j(e-c)2f(X)dX=O. 

-= -00 

4. The variance of a random quantity multiplied by a deterministic factor 
is 

00 

M [(exf] =e2 j (x-mx )2 f(x)dx= e2Dx. (1.23) 

-00 

Example 1.1. A random force with known characteristics mQ and DQ 
is acting on the rod shown in Fig. 1.3. It is required to determine the expec­
tations and variances of reactions, of the deflection in the point of a force Q 
application and of the maximum normal stress in the rod (in the section K). 
The flexural rigidity of a beam is EJx . 
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y 
a Q b 

K 
z ------------ YK ------

a) 

Fig. 1.3. 

Let us determine reactions RI and R2 and the deflection Yk in the point 
of force application and the maximum normal stress in the section according 
to the formulas obtained for deterministic forces: 

a 
R2 = a+ bQ; 

Mmax ab Q 
17max = -W-x- = (a + b) Wx . 

Using the previous results, we shall obtain the probability characteristics 
of R1 , R2 , Yk and 17max : 

a 
mR2 = --bmQ ; 

a+ 
ab 

Let us estimate a probability that the difference (17max - mO"noaJ will take 
a value exceeding the yield point of a beam material. Using the Ch,ebyshev 
inequality (1.21), we shall get 
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1.4 Probability Density Distribution Laws 

The laws of the probability theory represent a mathematical expression of 
real laws manifesting in mass random phenomena. The distribution laws of 
random quantities (and more general distribution laws of random functions) 
primarily apply to such mathematical laws. As a rule, random quantities 
distribution laws are determined on the basis of experimental investigations. 
Sometimes, however, the distribution laws can be obtained theoretically. An 
example of the theoretical determination of a distribution law is presented at 
the end of this paragraph. 

1. The Probability Density Distribution Law, when a random quan­
tity X takes a single value x = a with probability P = 1. 

In this case 

f(x)=o(x-a), (1.24) 

where 0 (x - a) is the delta function. 
The principal properties of the delta function are given in Appendix 1. 
2. Probability Density Normal Distribution Law (Gaussian Law) 

(Fig. 1.4). The normal distribution law is a most commonly encountered 
practical laws that is characterized by the probability density 

(1.25) 

3. Rayleigh Probability Density Distribution Law In many applied 
problems random quantities can take only positive values (vibration ampli­
tudes, the potential energy of an elastic system at random deformations, the 

x 

Fig. 1.4. 
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Fig. 1.5. 

kinetic energy of a system at random velocities etc.). For example, an impulse 
of a random magnitude J is acting on a mass m (Fig. 1.5), imparting the 

·2 

latter a random velocity i; equivalent to a random kinetic energy m; ,that 

is independent on the velocity i; sign. Random variables taking only positive 
values frequently follow the Rayleigh distribution function 

{ l-exp{-~} x>o· 
F(x) = 2a2 ' -, 

0, x < O. 

(1.26) 

In this case, the probability density function (Fig. 1.6) is 

f(x) = { :2 exp { - ;:2 }, x ~ 0, 

0, x < O. 

(1.27) 

The mathematical expectation and root-mean-square value of X are equal 
to 

00 00 

mx = J xf (x) dx = J :: exp { - ;a22 } dx = a~, 
o 0 

ax = 0,655a. 

x 

Fig. 1.6. 
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The Rayleigh distribution is a one-parameter distribution, as mx and ax 
depend on a single parameter a. 

If, as a result of experimental data processing, we obtain a distribution law 
which we may consider a Rayleigh distribution law, the parameter is equal 
to the maximum value of the probability density (Fig. 1.6). The derivative 
of f(x) (1.27) is equal to 

df = ~ (1- x2) exp {_~} = O. 
dx a2 a2 2a2 

Therefore, the extremal value of f (x) is reached at x = a. 
4. Poisson Distribution Law A discrete random quantity X (non­

dimensional) is regarded as distributed according to the Poisson law, if its 
possible values are equal to 0, 1, 2, ... , n and given the probability that 
X = n is expressed by the relationship 

(1.28) 

where a > O. 
The expectation and variance of a random variable X distributed accord­

ing to the Poisson law are equal to: mx = a and Dx = a. 
This property of the given distribution is used to verify the hypothesis 

that a random quantity X is distributed according to the Poisson law. If the 
statistical characteristics mfcl) and Dfcl ) are close, it confirms the validity of 
the assumption, that the random quantity X is distributed according to the 
Poisson law. 

5. Law of the Rectangular Distribution of Probability Density If 
the continuous random quantity possible values fall within some particular 
interval and within it all values of the random quantity are equally probable, 
the latter is said to have a rectangular distribution (Fig. 1. 7). 

In this case 

f (x) = {
a, Xl < :r < X2 

0, x < Xl or x > X2 
(1.29) 

where a is the density of distribution; (Xl, X2) is the interval of the random 
quantities possible values. 

r 
Fig.!. 7. 
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The mathematical expectation and variance of the random quantity X 
that is uniformly distributed within the interval (Xl, X2) are equal t~ 

respectively. 
6. Distribution Law of the Probability Density of the Modulus 

of a Random Quantity Distributed According to the Normal Law 
A random quantity y is equal to the modulus of a random quantity x, i.e. 
y = Ixl. The random quantity X has normal distribution. The distribution 
law of the probability density of Y takes the form: 

where mx and ax are the parameters of the random quantity X normal dis­
tribution law. The mathematical expectation and variance of the random 
quantity are equal to 

where 

~ 

4>0 (mx) = _1 j"'" exp {_ t2
} dt, ax V27f 2 

o 

(mx) 1 {m;} <p - ---exp -ax - V27f 217;· 

The plots of f (y) as a function of mx are presented in Fig. 1.8. 
In the particular case of mx = 0, 

f (y) = _2_ exp {_ y22} 
..J'iir a x 217 x 

(1.31) 

7. The Law of the Logarithmically Normal Distribution of the 
Probability Density Let us consider random quantities related by the for­
mula x = 19 y. If the random quantity x is distributed normally, then 

II (y) = 1 exp {_ (lgy _lgm)2} . 
V27fa [lgy] 2172 [lgy] 

(1.32) 
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~)r-----.------.------r-----~ 

mx= O 

y 

Fig. 1.8. 

The behavior of the function f (y) for a number of (J values at 19 m = 1 
is shown in Fig. 1.9. 

8. Gamma Distribution Law For this law we have 

(1.33) 

00 

where a > -1; ,8> 0; and r (a + 1) = J e-ttO< dt is the gamma function . 

o 

~).-----~----~r-----~-----. 

0.16 f-----+-+-+----+-----+------4 

10 20 30 y 
Fig. 1.9. 
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The parameters of the gamma distribution are 

f(x) 

0.8 

0.6 

0.4 

0.2 

0,= 0 r---c-
1 
\ J 
A"--
~ 

~=1 

0, =2 
.--

r--.----== """'--
2 4 6 

Fig. 1.10. 

x 

The probability density plots for a = 0; 1; 2 at f3 = 1 are given m 
Fig. 1.10. For large values of a the gamma distribution goes into a nor­
malone. If we introduce in (1.33) f3 = * and a = k, where k is an integer 
positive number, we get the Erlangian probability density 

f ( ) = A (AX)k -AX 
X k! e (x> 0), (1.34) 

which is used in the reliability theory. 
9. Weibull Probability Density Distribution Law The Weibull dis­

tribution function and the Weibull density of distribution at x ~ Xa, 'Y > 0 
take the form 

{ (x - x r}' F (x) = 1 - exp - Xo a ; (1.35) 

f ( ) - 'Y ( )"1- 1 {(x - Xa)"1 } 
X - - X - Xa exp - , 

Xo Xo 
(1.36) 

where X a , Xo and 'Yare free parameters . 
In the particular case, where X a. = 0 and Xo = 1, we get 

(1.37) 

The plot of the function f (x) for a number of 'Y values is shown in 
Fig. 1.11. 

The expectation and variance of the random quantity following the dis­
tribution (1.37) are: 
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f(x) rr------,-=-=---,--=-r--,-----, 
y = 0.5 Y = 3 

x 

Fig. 1.11. 

Let us consider the following problem as an example of the probability 
density analytical determination. 

A point mass m (Fig. l.12) executes simple harmonic oscillations (steady­
state oscillations under the action of a harmonic force) . 

x 

a a 

Fig. 1.12. 

In this case, the mass m displacement at an arbitrary instant is 

x = asinwt, 

where a is the oscillation amplitude. 
It is required to determine the probability density of an event, in which 

at a random instant the point m finds itself at some distance x from the 
equilibrium position. We may consider that the probability of the mass falling 
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within the interval (x, x + dx) at an arbitrary instant is proportional to the 
length of this interval dx and inversely proportional to the point motion 
velocity, i.e. 

dx dx 
dP (x < X < x + dx) = CI-:- = CI -d = CI dt, 

x x 

where CI is a proportionality factor. 
Since 

dP = f (x) dx, 

then by way of manipulation we get 

dt 
f (x) = CI dx· 

dt 

Let us use the law of the mass m motion to eliminate time t from this 
expression for f (x) 

~; = awcoswt = aWV1- sin2wt = awJ1- (~)2 = wva2 - X2, 

therefore 
CI 

f(x)= ) 2 2 
W a -x 

Then we determine CI value from the normalization condition 

00 a I f(x)dx = I f(x) dx = 1. 
-00 -a 

Through calculations we get CI = win. The final expression for the prob­
ability density is 

1 
f(X)=)2 2 

n a - x 

The plot of the probability density function f (x) is presented in Fig. 1.13. 
The distribution function is 

x 

F (x) = I f (x) dx = ~ (arcsin ~ + ~) . 
-a 

The probability of the mass m being in the interval (Xl, X2) at an arbitrary 
instant is 

IX2 
1 ( . X2 . Xl) P (Xl :s; X :s; X2) = f (x) dx =;;: arcsm ~ - arcsm ~ . 
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f(x) 

x 

a a 

Fig. 1.13. 

1.5 Determination of the Probability of a Normally 
Distributed Random Quantity Lying in the Given Range 

Let us use the relation (1.9) to determine the probability that a random 
quantity lies in the range (x I, X2) . 

The distribution function is 

x-m 
Introducing the notation x = t, we get the probability integral 

(J 

t2 

F (t) = ~ f exp { - t;} dt = p (t). 
t, 

Then 

where 

Xl - mx 
tl = --­

(J 

X2 - mx 
t2 = ----'­

(J 

(1.38) 

The P (t2) and P (t l ) numerical values may be found in handbooks on 
higher mathematics. 

Let us determine the probability that a random quantity X falls within 
the (J length interval (Fig. 1.14). 
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x 

Fig. 1.14. 

The probability that x falls within the interval (mx, mx + a) is 

P = (mx < x < mx + a) = cfJ (t2) - cfJ (h) , 

where 

mx +a - mx 
t2 = = 1; 

a 
mx -mx 

tl = = 0, 
a 

therefore 

P (mx < x < mx + a) = cfJ (1) - cfJ (0) . 

Substituting the values cfJ (1) and cfJ (0), we finally get 

P (mx < x < mx + a) = 0,341. 

In the same way we determine the probability that i; falls within the 
following a length intervals: 

P (mx + a < X < mx + 2a) = cfJ (2) - cfJ (1) = 0,136; 

P (mx + 2a < X < mx + 3a) = cfJ (3) - cfJ (2) = 0,012. 

The sum of the three above-mentioned probabilities is approximately 
equal to 0,5 (correct to 1 %). This means that for a normally distributed 
random quantity the spread is well within the interval mx ± 3a. The ob­
tained result allows us to determine the approximate range of random quan­
tity possible values on the basis of the known values of their mathematical 
expectation and standard deviation. This estimation method is called the 
"three sigma rule" and can be used only in cases, where we can ignore the 
realization of an event with small probability. 

Example 1.2. A periodic force F = Fo coswt with a random normally 
distributed amplitude Fo is acting on an inertialess rod (Fig. 1.15). Its proba­
bility characteristics are mFo = 6,5 N, aFo = 2,4N. It is required to determine 
the probability that this force acting on the rod lies in the 100 -7 120 N range. 
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-l------------------ I· F 

Fig. 1.15. 

Let us determine the values t2 and tl : 

120 - 65 
t2 = 24 = 2, 292; 

= 100 - 65 = 1 458. 
tl 24 ' 

The probability that such amplitude of the force occurs within the interval 
100 -;- 120 N is 

P (100 < Fo < 120) = ~ (t2) - ~ (td = 0,0614. 

1.6 Random Quantity Systems and Their Numerical 
Characteristics 

Let us consider the simplest case of such systems, a system of two random 
quantities X, Y. 

The probability of a simultaneous fulfillment of two inequalities X < x 
and Y < y, i.e. 

F (x, y) = P (X < x, Y < y). (1.39) 

is referred to as joint distribution function of two random quantities X and 
Y. 

Geometrically, the relation (1.39) is the probability that a random point 
falls within the shaded area (Fig. 1.16). A two-dime~sional probability density 
may be introduced in the same way as that of one dimension: 

f ( ) 1· P (x :::; X :::; x + Llxj y:::; Y :::; y + Lly) a2 F (x, y) 
x, y = lnl = . 

LI",-+O LlxLly ax ay 
Lly--+O 

(1.40) 

It follows from the relation (1.40), that f (x, y) dx dy is the probability 
of a point falling within the infinitely small rectangle (see Fig. 1.16). The 
probability that a point falls within some finite area B of the plane is equal 
to 
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Fig. 1.16. 

P = J J f (x, y) dx dy. (1.41) 

B 

The distribution function and the probability density are related by the 
following equation 

x y 

F(x, y) = J J f(x, y) dxdy. (1.42) 

- 00 -00 

From this formula we may obtain the relation 

(PF(x, y) = f(. ) 
8x8y x, Y . (1.43) 

The function F (x, y) meets the conditions: 
1) 0 S; F(x, y) S; 1; 
2) F(-oo, y) = 0 at any y; 
3) F (x, -(0) = 0 at any x; 
4) F(x, (0) = P(X < x) = FI (x); 
5) F (00, y) = P (Y < y) = F2 (y); 
6) F (00, (0) = 1. 
The function f (x, y) must satisfy the condition 

00 :>0 J J f(x, y) dxdy = 1. (1.44) 

-(XJ -00 

We may obtain the probability density of each random quantity in terms 
of joint probability density from the formulas: 
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00 

II (x) = J f(x, y) dyj (1.45) 

-00 

00 

h (y) = J f (x, y) dx. (1.46) 

-00 

The random quantities X and Yare called dependent, if events consisting 
in the fulfillment of the inequalities X < x and Y < yare dependent at least 
for one pair of x and y values. 

Conditional Distribution Laws The conditional distributioQ law of 
one of the quantities (X, Y) entering a system, is called its distribution law 
deduced subject to the condition that the other random quantity has taken 
a specific value, i.e. 

F(x, y) = Fl (x) F2 (ylX < x) 

or 

F (x, y) = F2 (y) Fl (x IY < y). (1.47) 

Differentiating firstly with respect to x, and then with respect to y, we obtain 
with the use of the density-multiplication theorem 

82 F(x, y) 
8x8y = I(x, y) = II (x) h (Ylx) (1.48) 

or 

82 F(x, y) 
8x 8y = 1 (x, y) = h (y) II (x Iy) . (1.49) 

The relations (1.48) and (1.49) are referred to as the distributfon laws 
multiplication theorem. From (1.48) and (1.49) we determine the conditional 
distribution laws in terms of unconditional laws: 

or 

1 ( I ) = 1 (x, y) . 
y x Idx) , 

1 ( I ) = 1 (x, y) 
x y h (y) 

1 (y I x) = -:00:-:-=-/..:-( x-,-' Y::..c)_ 

J 1 (x, y) dy 
-00 

1 (x Iy) = -:00:-:-=-1.:.-( x-,-' y::;.:..)­

J I(x, y) dx 
-00 

For conditional densities the following conditions 

00 

f (x Iy) ;:: OJ J 1 (x Iy) dx = 1. 
-00 
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00 

f (y Ix) ;::: 0; J f (y Ix) dy = 1. 
-00 

are fulfilled. 
Random quantities X and Y are considered independent, if events con­

sisting in the fulfillment of the inequalities X < x, Y < yare independent 
at any values of x and y. For ind~pendent random quantities X, Y a joint 
distribution function (based on the rules of multiplying the probabIlities of 
independent events) is 

F(x, y) = P(X < x) P(Y < y) (1.50) 

or 

F (x, y) = Fl (x) F2 (y) . (1.51) 

Differentiating the relation (1.51) initially with respect to x, and then 
with respect to y, we get 

[)2 F (x, y) = [)F1 . [)F2 = f ( ) = f ( ) j ( ) 
[)x [)y [)x [)y x, Y 1 X 2 Y . (1.52) 

Numerical Characteristics of a System of Two Random Quanti­
ties In order to establish a "linkage" between two random quantities X and 
Y, a nonrandom numerical characteristic - the correlation moment Kxy -
is introduced. For discrete random quantities it is equal to 

n n 

Kxy = L L (Xi - m x) (Yj - my) Pij , 

i=1 j=1 

where Pij is the probability that the system (X, Y) will take the value 
(Xi, Y.i). For continuous random quantities, the correlation (cross-correlation) 
moment is equal to 

[ 
0 0] 00 

Kxy = M XY = II (x - m x) (y - my) f (x, y) dxdy, 
-00 

where f (x, y) is the joint distribution law of the probability density of the 
random quantities (X, Y) system. To illustrate the joint distribution law of 
two random quantities, we may cite the normal distribution law 

(1.53) 
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We have the following probability characteristics for two random contin­
uous quantities: 

00 

mx = II xl (x, y) dxdy; 
-00 

(1.54) 
00 

my = II yl (x, y) dxdy; 
-00 

00 

Dx = I I (x - mx)2 I (x, y) dxdy; 
-00 

(1.55) 
00 

Dy = II (y - my)2 I (x, y) dxdy; 
-00 

00 

Kxy = I I (x - m x) (y - my) I (x, y) dxdy. (1.56) 

-00 

Since for Independent random quantities I(x, y) = h(x)ht(y), we get 
from the formula (1.56) 

00 00 

Kxy = I h(x)(x - m x) dx I h(Y)(Y - my) dy 
-00 -00 

Hence, if the correlation moment of two random quantities differs from 
zero, it points to the presence of a relationship between them. Random quan­
tities with a zero correlation moment are referred to as uncorrelated random 
quantities. It follows from the formula (1.56) that a correlation moment char­
acterizes not only the relationship of quantities, but also their scatter. If, for 
example, the quantity X or the quantity Y insignificantly deviates from its 
mathematical expectation, their correlation moment will be small irrespec­
tive of the kind of relationship between them. Therefore, to eliminate this 
shortcoming a non-dimensional characteristic is introduced, namely the cor­
relation coefficient (or normalized correlation moments): 

(1.57) 
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where ax, ay are the standard deviations of the random quantities X and Y. 
The correlation coefficient can exceed zero or be less than it. The factor Txy 
varies within the limits 

-1 < Txy < 1. (1.58) 

To prove the validity of the relation (1.58) let us consider a random quan­
tity z: 

where ax, a y are the random centered quantities X and Y root-mean-square 
values. The random quantity Z variance is equal to 

The variance is more than zero. Therefore 

a;Dx + a~Dy ± 2axayKxy ~ 0 

or (as Dx = a~, Dy = a~) 

It follows from the last relation that 

or 

(1.59) 

Let us determine, for example, Txy for linearly related random centered quan­
tities Y and X: 

Y=ax. 

The variance Dy is equal to a2 Dx. The cross-correlation moment Kxy is equal 
to 

Therefore 

The reverse is also true: if the correlation coefficient Txy is close to unity, 
the relationship of the random quantities X and Y differs little from a linear 
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one. The correlation coefficient Txy (1.57) determining the degree of correla­
tion between the two random funCtions, has no strict functional ch'aracter. 
A correlation dependence and not the functional one is used when one of 
the quantities depends not only on the second quantity, but also on a se­
ries of random factors that cannot be taken into account when determining 
relationships between the quantities. 

The dependence between random quantities X and Y manifests itself in 
the fact that a conditional probability, for example, occurrence of 1j, during 
the realization of an event Xk differs from the unconditional probability. In 
other words, the influence of one random quantity on another is characterized 
by the conditional distribution of one of them at a fixed value of another. The 
practical use of the correlation coefficient during the quantitative estimation 
of a degree of relationship (degree of dependence) between two random quan­
tities is usually satisfied when the law of distribution is normal. In this case, 
the independence of random quantities follows from the equality Kxy = o. It 
is impossible to use Kxy for the estimation of a degree of interdependence of 
two arbitrary random quantities, because even with a functional relationship 
petween the two quantities (op.e-fo'jo:p.e d~pendence) the correlation moment 
can be zero, Le. the concepts of noncorrelatedness and independence are not 
being same. . 

Let us discuss in greater detail whether the concept of the noncorrelat­
edness of random quantities is equivalent to the concept of independence. It 
has already been shown, that two independent random quantities are uncor­
related. The question arises: is the opposite statement true? Let us consider 
an example. A system of two random quantities (X, Y) has a uniform prob­
ability density inside a circle of some radius R, see the area D in Fig. 1.17. 
The joint density function of the random quantities X and Y is expressed by 
the formula 

{
a at X2 + y2 < R2 

f (x, y) = 2 2 . 
o at x +y2 > R 

From the normalization condition of the function f (x, y) we get 

00 J J f (x, y) dx dy = !! dx dy = 1 
-00 D 

therefore 

1 
a=7rR2· 

Let us show, that in this example the random quantities X and Yare 
dependent. If the random quantity Y has taken the value of 0, the random 
quantity X can with an equal probability take all values from - R to + R. 
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y 

x 

Fig. 1.17. 

If the random quantity Y has taken the value of R, the random quantity X 
can only take a zero value. This means that the range of X possible values 
depends on the value taken by quantity Y. Therefore, the random quantities 
X and Y are dependent. Now we shall find out, whether they are correlated. 
Let us find their cross-correlation moment Kxy (random quantities X and Y 
are centered) 

Kxy = f f xy f (xy) dxdy = 7r~2 ff xydxdy. 
D D 

As axes x, y (Fig. 1.17) are the axes of the area D symmetry, the integral 

f f xy dx dy is zero, that is Kxy = O. 

D 
The obtained result indicates that the random quantities X and Yare not 

correlated. Therefore, the noncorrelated nature of the random quantities does 
not always mean their independence. During practical calculations, however , 
the correlation coefficient gives a qualitative information about the interde­
pendence of two random quantities. For example, if Txy > 0, the increase of 
one random quantity usually leads to the growth of the other and at Txy < 0 
at increase in one random quantity, as a rule, makes the other one decrease. 

We may present the variances and correlation moments of two random 
quantities as the matrix 

K = IIKKxX KKXyll, (Kxx = Dx,Kyy = Dy). 
yx yy 

(1.60) 

For a system of n random quantities their variance and correlation mo­
ments may be presented in the way it is done with two random quantities 
systems, i.e. as the correlation matrix 
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K = (1.61) 

where Kx;x; = Dx;, or as the normalized correlation matrix 

K = (1.62) 

1 

Numerical Characteristics of a Sum and a Product of Two Ran­
dom Quantities The mathemat~cal expectation of a sum of two ,random 
quantities is equal to the sum of their mathematical expectations 

M[X + Y] = M[X] +M[Y] . (1.63) 

The variance of a sum of two random quantities is equal to the sum of 
their variances plus the double correlation moment 

D (X + Y) = Dx + Dy + 2Kxy . (1.64) 

The mathematical expectation of a product of two random quantities is 
equal to the product of their mathematical expectations plus the correlation 
moment 

M [XY] = M [X] M [Y] + Kxy . (1.65) 

The variance of a product of independent random quantities is equal to 

D (XY) = M [X2] . M [y2] - m~m~, 

where M [X2] = Dx + m~, M [Y2] = Dy + m~ . 
For centered random quantities: 

1. 7 Complex Random Quantities 

(1.66) 

(1.67) 

When solving applied problems we often have to consider not only real, but 
also complex random quantities. This makes us generalize the concepts of 
an expectation, a variance and a correlation function to complex quantities . 
A complex random quantity is defined as a random quantity whose possible 
values constitute complex numbers , i.e. 
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z = X + iY, (1.68) 

where X, Yare real random numbers, i is the imaginary unit. The complex 
quantities play an essential role in the theory of random functions. 

Considering the expression (1.68) as a sum of random quantities and in 
accordance with (1.63), we get the mathematical expectation of the random 
quantity Z 

(1.69) 

The variance of a complex random quantity Z is referred as the ¢xpecta-
o 

tion of the square of a centered random quantity Z modulus: 

(1.70) 

where Izl is the modulus of a centered random quantity. 

Under this definition the variance of a complex random quantity is always 
real and positive, i.e. the principal property of a variance is retained. 

Since 

I 01 2 0 0 0 0 
Z = Z Z* = X2 + y2 

o 
where Z* is a conjugate complex quantity, we get from (1.70) 

[ 
O 2 O 2 ] Dz = M X + Y = Dx + Dy . (1.71) 

The correl~tion moment of two complex random quantities X = Xl +iX2 

and Y = YI + iY2 in a particular c~se, where X = Y, should be equ~l to the 
variance Dx. This occurs, if we assume that 

(1. 72) 

o 
where Y* is a centered conjugate random quantity. 

Indeed, with this definition of a correlation moment at X = Y we get 

Kxy = M [x X·] = Dx· 

For arbitrary complex random quantities we have: 

(1. 73) 
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The correlation moment of complex random quantities depends on a se­
quence, in which they are taken, namely, when the sequence of the random 
quantities alters, their correlation moment changes into the complex conju­
gate quantity 

(1.74) 

1.8 Numerical Characteristics of Functions of Random 
Arguments 

When solving various engineering problems associated with the analysis of 
random phenomena, we often have to consider random functions depending 
on random quantities with known distribution laws. Knowing the distribu­
tion laws of the arguments of a composite function, we may determine the 
distribution law of this function. During the solution of applied problems, 
however, it is usually sufficient to have the numerical characteristics of the 
function of random arguments, and they are much easier to obtain, than the 
distribution law. 

Let us consider the problem of determining the numerical characteristics 
of a function Y of random argument x at the known distribution law of 
argument x, i.e. it is required to determine my and Dy, if 

Y=cp(X). (1.75) 

For a discrete random quantity' X, the probabilities of discrete vMues Xj 
occurrences are known, i.e. the distribution law (Xj ""'* Pj) is known. There­
fore, from (1.75) we obtain the relation (Yj ""'* Pj), where}j = cp (Xj), i.e. we 
get the table: 

Table 1.2. 

PI P2 P3 Pn 

It is similar to the table (see section 1.2) defining the distribution law of 
a random quantity X. In the presented table, cp (Xi) do not necessarily go in 
ascending order. In addition to this, the coincidences of cP (x.i) at different Xj 
are possible, but we always may arrange the quantities cP (Xj) in ascending 
order, to combine columns with equal cP (Xj) by adding their probabilities, 
i.e. we may obtain a table completely corresponding to the distribution func­
tion. Therefore, for the discrete random quantity Y the expectation ,is equal 
to 
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n 

M [Y] = M [<p (x)] = L <p (Xj) Pj = m£l). (l.76) 
j=l 

For the continuous random quantity Y: 

00 

M [Y] = I <p (x) f (x) dx = my. (l. 77) 

-00 

The variance of a function depending on one random argument, is equal 
to 

00 

Dy = D [<p (x)] = I [<p (x) - my]2 f (x) dx. (l. 78) 
-00 

For a function depending on two random arguments, 

Z = <p(X, Y) (l. 79) 

the expectation and variance are equal to 

00 

M[Z]= II <p(x,y)f(x,y)dxdy=mz, (l.80) 

-00 

00 

Dz = D [<p (x, y)] = II [<p (x, y) - mz]2 f (x, y) dx dy. (l.81) 

-00 
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2. Non-Stationary Random Functions 
(Processes) 

2.1 Introduction 

In engineering practice, we have to examine random quantities depending 
on continuously varying nonrandom arguments, such as the time t and the 
coordinates x, y, z . This kind of random quantities is referred to as random 
functions. 

Figure 2.1 shows records Xj(t) of the random function X(t), depending on 
time alone. Each particular record is termed as a random function X(t) real­
ization. The set of all possible realizations, which a random phenomenon X (t) 
can achieve, is referred to as a random or stochastic process. The pertinent 
branch of science, which studies random processes, may be called "random 
phenomena dynamics" . 

t t' t 
Fig. 2.1. 

The random function X(t), depending on time alone, will be referred to 
as a random process, by analogy with the dynamic deterministic process. It is 
common practice to term a random function depending on time and space, as 
a random space-time process, or, when it does not lead to confusion, simply 
as a random process. 

Examples of dynamic systems, whose investigation involves the solution of 
differential equations of disturbed motion caused by random forces, that vary 
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in time, have been given in the introduction. These problems refer to "dy­
namic random phenomena", i.e. to random processes. For example, scatter 
LlR of engine thrust R , depending on time (Fig. 0.2), is a random function. 
It is worth noting that during the study of random processes it is not the 
properties of separate random functions Xj(t), characterizing the process, 
that are examined, but the properties of the full set of functions in their en­
tirety. This makes it possible to analyze the motion of a mechanical system 
under the action of random disturbances, to investigate its behavior relative 
not to anyone action, but to a variety of possible random actions. 

Let us consider a random function X(t). Suppose that; n independent 
trials have been carried out, as a result of which; n realizations Xj(t) have 
been obtained (Fig. 2.1). Each realization is a nonrandom function, but be­
fore a trial it is impossible to predict the way Xj(t) would vary. The Xj(t) 
variation from zero to tl, which came to light after the trial, doesn't allow 
us to predict Xj (t) behavior at t > t I , that is Xj (t) is not determined at 
t > t l . If we fix argument t = h the random function X(t) will turn into 
random quantity X, which is the subject matter of the probability theory. 
Let us call this random quantity random function X (t) section corresponding 
to a given moment tl (Fig. 2.1). At t > h we obtain n values of the random 
function. It is possible to fix time and consider the process variation in a 
set of trials. Therefore each realization characterizing the process depends on 
the following two nonrandom arguments: a realization discrete number and a 
continuous time. For example, if we record vertical accelerations at any point 
of a car (Fig. 0.2, a), then during each travel along the same road at one and 
the same speed, well obtain one realization Xj (t), the set of these realizations 
determining the random process. 

In engineering practice, a particularly keen interest has been shown for 
the analysis of machines, devices and structures random vibrations substan­
tially affecting their serviceability (fatigue strength, reliability and lifetime). 
Presently there is no branch of industry, that does not use in their new ma­
chinery designs and analyses some or other sections of statistical mechanics 
and, in particular, a main section devoted to the theory and numerical meth­
ods of random processes analysis. 

Let us consider the mechanical system vibrations due to random distur­
bances in greater detail. Figure 0.2 shows the launching of a rocket from 
an inclined guide. Due to random combined technological and gasdynamical 
misalignments (linear e and angular a) varying with time, thrust R is not 
directed along the rocket axis, this bringing into existence two random distur­
bances - force Ne = IRI a and moment Me = IRie (except for thrust scatter 
LlR). Figure 0.1 a shows the car moving over the road with random irregu­
larities (h(x)). Taking into consideration that at constant velocity x = vt, 
h( vt) is a random function dependent on time. 

Figure 0.5 shows a high-rise structure (for example, television tower or 
antenna mast) under the action of wind load, which is a distributed aerody-
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namic force q(t), having a random component due to a random component 
of flow velocity, that is 

q(t) = qo(t) + Llq(t) 

where qo (t) is the deterministic component of the distributed load, Llq (t) is 
the random component of the distributed load depending on time. 

The loads qo and Llq depend on vo(t) and Llv(t) respectively, where vo(t) 
is the modulus of the wind velocity deterministic component and Llv(t) is the 
modulus of the projection of the flow velocity random component on vector 
Vo direction. If wind velocity is constant through the height (does not depend 
on z), random distributed load q(t) depends on time only. Generally, wind 
velocity v for high-rise structures may be dependable also on coordinate z. 
Therefore 

v (t, z) = Vo (z, t) + Llv (z, t) 

where Llv(z, t) is a one-dimensional vector random function. Distributed 
aerodynamic load arising from the action of random wind load on such 
structure elements as plates and shells depends on two coordinates and time 
(Fig. 2.2) 

q = q (t, x, y) . 

In engineering practice, we have to deal with different random processes, 
description methods for these processes largely depending on their nature; 

z 

------ x 

y 

Fig. 2.2. 
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therefore it is appropriate to classify random processes in such a way as to 
simplify the selection of these methods in applied problems investigation. 
This requires the introduction of appropriate terms, making it possible to 
answer the question: what specific random process is under consideration? 

It will be recalled, that classical analytical dynamics and the theory of 
vibrations study deterministic processes, regarding the dynamic process as 
the systems response to external deterministic excitation whose variation 
with time is known exactly. The main feature of deterministic processes lies 
in the fact that process behavior in the future can be predicted exactly, if we 
know its behavior in the past. 

As stated above, the analog of these processes in statistical dynamics are 
stationary and non-stationary random processes similar to deterministic sta­
tionary and non-stationary processes. The classification of dynamic processes 
as deterministic or random processes can sometimes cause doubts. Determin­
istic and random processes are two limiting cases. Any real dynamic process 
always contains a random component. When its influence on the final result 
is insignificant, it may be disregarded and we can consider the process to be 
deterministic. Small random components, however, often may give rise to a 
great scatter in final results, which can not be neglected. 

It is safe to say that all physical processes are not fully deterministic, 
because the appearance of a non-controllable random disturbance is always 
possible, and it will make the initially deterministic process a random one. 
Random dynamic processes that are brought about in mechanical systems, 
are the systems response to random external forces which in turn are random 
processes. 

To investigate the random motion of mechanical system we need at least 
minimum of information about random external forces including, for exam­
ple, random processes probability characteristics. That is why this chapter 
is devoted to the presentation of the general theory of random functions or 
random processes, in particular, random processes describing external loads 
("input") acting on mechanical systems. It is impossible to obtain "output" 
probability characteristics necessary for structure "strength" evaluation with­
out the knowledge of input probability characteristics. 

2.2 Probability Characteristics of Non-Stationary 
Random Functions 

Let us consider random function X(t) (Fig. 2.1), a random quantity at each 
given argument t value; whose exhaustive probability characteristic is its dis­
tribution law. It is referred to as the one-dimensional distribution law of 
random function X. This law depends on parameter t, and can be given by 
one-dimensional probability density f(x, t). The one-dimensional distribu­
tion law f(x, t), however, does not constitute the exhaustive characteristic of 
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random function X(t). Function f(x, t) only characterizes distribution law 
X(t) for a given, even if arbitrary time t. Knowing f(x, t) we cannot answer 
the question about the dependence of random quantities X(t) at different t. 
Fuller characteristic of random function X (t) is the two-dimensional distri­
bution law: 

(2.1) 

which is a two random quantities X(h), X(t2) system distribution for two 
arbitrary sections of random function X (t). This characteristic, however, also 
cannot be generally described as exhaustive, because three-dimensional dis­
tribution law may give even a fuller characteristic 

(2.2) 

Theoretically, we may to increase the number of arguments beyond all 
bounds and get even more comprehensive information about the random 
function. It is, in fact, impossible, however, to use such cumbersome char­
acteristics that depend on many arguments in practical analysis. Therefore, 
only one- and two-dimensional distributions are employed in the solution of 
applied problems of random dynamic processes analysis. The theory of ran­
dom functions using one- and two-dimensional distribution laws is called the 
correlation theory. 

It has been shown in the first chapter that such nonrandom numerical 
characteristics of random quantities as mathematical expectation and vari­
ance for one random quantity, mathematical expectations and correlation 
matrix for the system of random quantities, playa major role in the prob­
ability theory. The ability of using numerical characteristics is the heart of 
the applied probability theory. They constitute a rather versatile and pow­
erful mathematical apparatus, which makes it possible to find rather simple 
solutions to many practical problems. 

The simplest basic characteristics, similar to the numerical characteristics 
of random quantities, are also introduced for random functions, with the rules 
of procedure being established for them. This apparatus proves to be sufficient 
for the solution of many practical problems. 

Unlike the numerical characteristics of random quantities representing 
certain numbers, the characteristics of random functions generally represent 
functions rather than numbers. 

Let us consider the random function X(t) section at a given t. We have an 
ordinary random quantity in this section; let us define its mathematical ex­
pectation. It is obvious that in the general case it depends on t, i.e. represents 
any function of t (Fig. 2.1) 

mx (t) = M [X (t)]. (2.3) 

This means that nonrandom function mx(t), which equals to the mathe­
matical expectation of the random function appropriate section at each ar-
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gument t, is referred to as the mathematical expectation of random function 
X(t). 

The random function variance is defined in a similar way. 
Nonrandom function Dx(t), whose value for each t equals to the variance 

of the appropriate random function section is referred to as the variance of 
the random function X(t): 

Dx (t) = D [X (t)]. (2.4) 

The variance of the random function at each t defines the scatter of the 
possible realizations of the random function about the mean, in other words, 
"the extent of randomness" of the random function. 

As in the case of random quantities Dx(t) is a non-negative function. 
Taking the root of this function, we obtain function o-x(t) or the standard 
deviation of the random function 

o-x (t) = JDx (t). (2.5) 

Mathematical expectation and variance are rather important character­
istics of the random function; these characteristics, however, are not enough 
to describe the main features of random functions. To make sure that this is 
true , let us consider two random functions Xl (t) and X 2 (t), vividly shown 
by the families of realizations in Fig. 2.3 a and 2.3 b. 

X 1(f) 

a) 
b) 

Fig. 2.3. 

Random functions Xl (t) and X 2 (t) have almost the same mathematical 
expectations and variances; however, the nature of the variation of these 
random functions realizations is absolutely different . The random function 
Xl (t) is marked by a pronounced dependence between its values at different t. 
On the contrary, the random function X 2(t) is of erratic oscillatory character. 
Such random function is marked by a rapid decline in relationship between 
its values at t' and t with an interval t' - t increase. 
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The internal structure of these random processes is absolutely dissimi­
lar, but this difference is recovered neither by mathematical expectation nor 
by variance. Therefore, another nonrandom characteristic referred to as the 
correlation function (or autocorrelation function) is being introduced. The 
correlation function defines the degree of relationship between random func­
tion sections at two different instants of time (t' and t). 

Let us consider two random function X(t) sections (Fig. 2.3 a) associated 
with different instants t and t'. It is apparent that at close t and t' values 
quantities X(t) and X(t') are closely related: if quantity X(t) took any value, 
there would be the high probability of quantity X(t') taking the value close 
to that of quantity X (t). In general, interrelation between quantities X (t ) 
and X(t') must weaken with an increase of the interval between sections t 
and t'. 

The degree of relationship between quantities X(t) and X(t') may be 
largely defined by their correlation moment. 

Thus, the non-random function of two arguments Kx(t, t'), which equals 
to the correlation moment of the appropriate random function sections at 
each pair of values t, t', is termed as the correlation function of the random 
function X (t) : 

Kx (t, t')) = M [X (t) X (t')] , (2.6) 

where 

a a 
X (t) = X (t) - mx (t) , X (t') = X (t') - mx (t') . 

a a 
(X{t) and X{t')) are centered random functions. 

The random functions X1{t) and X 2 (t), considered as an example, have 
the same mathematical expectations and variances, but totally different cor­
relation functions. The correlation function of the random function X1{t) 
(Fig. 2.3 a) decreases slowly with an increase in the interval (t, t'); on the 
contrary, the correlation function of the random function X 2 {t) (Fig. 2.3 b) 
decreases rapidly with an increase in this interval. 

When it arguments coincide the correlation function Kx(t, t') equals to 
the variance of the random function. 

Kx (t, t') = M [(X (t)) 2] = Dx (t) . (2.7) 

Since the correlation moment of the two random quantities X(t) and 
X{t') does not depend on the sequence of considering these quantities, the 
correlation function is symmetrical about its arguments, i.e. remains the same 
when arguments interchange their positions: 

Kx (t, t') = Kx (t', t). (2.8) 
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Kx(t, f) 

t 

t' 
t = f 

Fig. 2.4. 

The qualitative variation of Kx (t, t') as a function of t and t' is shown on 
Fig. 2.4. 

Instead of correlation function Kx(t, t'), we may use the normalized cor­
relation function: 

( ') Kx (t, t') 
rx t, t = ax (t) ax (t') , (2.9) 

which is the correlation coefficient of the quantities X(t), X(t'). The normal­
ized correlation function is similar to the normalized correlation matrix of 
the random quantities system. It satisfies the condition (similar to condition 
(1.59» 

Jrx (t, t')1 ::; 1 

because 

JKx (t, t') I ::; ax (t) ax (t') . 

At t = t' the normalized correlation function is equal to unity: 

Kx (t, t) Dx (t) 
rx (t, t) = 2 = [ ()]2 = 1. [ax (t)] ax t 
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Let us consider how the principal random function characteristics vary 
when a nonrandom term is added to the function and when the latter is 
multiplied by a nonrandom factor. These nonrandom terms and multipliers 
can be either constant quantities or the functions of t (in general case). 

Adding the nonrandom term <p(t) to the random function X(t), we obtain 
the following new random function: 

Y (t) = X (t) + <p (t) . (2.10) 

According to the theorem of adding mathematical expectations, we get 

my (t) = mx (t) + <p (t) , (2.11) 

i.e., when adding a nonrandom term to a random function the same nonran­
dom term is added to its mathematical expectation. 

Let us obtain the correlation function and variance of the random function 
Y(t) : 

Ky (t, t') = M [y (t) y (t')] = M [(Y (t) - my (t)) (Y (t') - my (t'))] 

=M [(X (t) + <p (t) - mx (t) - <p (t)) (X (t') + <p (t') - mx (t') - <p (t'))] 

=M [(X (t) - mx (t)) (X (t') - mx (t'))] = Kx (t, t'). 

Dy (t) = Dx (t) , 

i.e., when adding a nonrandom term, the correlation function and variance 
of the random function do not alter. 

Let us multiply the random function X (t) by the nonrandom function 
<p(t) : 

Y (t) = <p (t) X (t) . (2.12) 

By factoring the nonrandom function <p(t) from the sign of mathematical 
expectation, we obtain 

my (t) = M [<p (t) X (t)] = <p (t) mx (t), (2.13) 

i.e., when multiplying a random function by a nonrandom factor, its mathe­
matical expectation is multiplied by the same factor. 

Let us derive the correlation function and variance 

Ky (t, t') = M [y (t) y (t')] = M [(Y (t) - my (t)) (Y (t') - my (t'))] 

= M [<p(t)<p(t') (X(t) - mx(t)) (X(t') - mx(t'))] = <p(t) <p(t')Kx(t, t'), 

Dy (t) = <p2 (t) Dx (t) , 

(2.14) 
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i.e., when multiplying a random function by the nonrandom function <p(t) , its 
correlation function is multiplied by <p(t)<p(t'), and its variance is multiplied 
by <p2(t). 

In particular, when <p(t) = c (does not depend on t), the correlation 
function is multiplied by c2 • 

Example 2.1. It is required to determine the normalized correlation func­
tion, if the random function is 

X (t) = Ae-at , 

where A is a random quantity with the known mathematical expectation mA 
and the variance D A. 

The mathematical expectation of the random function is 

The correlation function of the random function X (t) is 

Kx (t, t') = M [(e- at - mAe-at) (Ae- at' - mAe-at')] 

= e-at e-at' M [(A - mA)2] = e-a(t+t') DA. 

The variance of the random function X (t) is equal to 

Dx (t) = DAe-2at . 

The standard deviations X ( t) for the instants t' and t are equal to 

o"x (t) = O"Ae-at ; 

O"x (t') = O"Ae-at'. 

The normalized correlation function is 

( ') kx (t, t') _ DAe-a(t+t') _ 
To: t, t = ( ) ( ') - 2 (t+t') - 1. o"x t o"x t O"Ae-a 

The result obtained indicates that there is a linear relationship between 
the values of the random function X(t) at different instants t' and t. 

Example 2.2. It is required to determine the correlation function of the 
random function X(t), if 

X (t) = Asinwt = Bcoswt, 

where A and B are random quantities, for which mA, mB, O"A, O"B and KAB 
are known (mA = mB = 0). By definition 

Kx(t, t') = M [(A sin wt + B coswt)(Asinwt' + B coswt')] 

= M [A2 sinwtsinwt' + ABsinwtcoswt' 

+ AB cos wt sin wt' + B2 cos wt cos wt'] , 
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or 

Kz(t, t') = sinwtsinwt'M [A2] + sinw (t + t') M [AB) 

+coswtcoswt'M [B2 ]. 

Finally we obtain 

Kz(t, t') = q~ sinwtsinwt' + KAB sinw (t + t') + q~ coswtcoswt'. 

Let us consider a particular case, where KAB = 0, and q~ = q~, 

Kz (t, t') = q~ cosw (t - t'). 

2.3 Random Function Systems and Their Probability 
Characteristics 

Let us consider the system of the following two random functions X(t) and 
Y(t), characterizing different random processes. For example, the random 
force Nl and the random moment Ml are acting on a rocket at launch 
(Fig. 0.2). Therefore it would be useful to be aware of the correlation relation­
ship of this random functions when studying the rockets disturbed motion. 

Let us consider the second product moment of the real centered random 
o 0 

functions X and Y for different instants of time: 

[0 0,] , 
M X(t)Y(t) = K zy (t, t), (2.15) 

where Kzy(t, t') is a cross-correlation function. 
The non-random function of the two arguments t and t' which is equal to 

the correlation moment of the appropriate sections of the random function 
X(t) and random function Y(t) at each pair of two values t, t', is referred to 
as the cross-correlation function of two random functions. 

The cross-correlation function does not satisfy the symmetry condition 
relative to its arguments, i.e. 

Kzy (t, t') '" Kxy (t', t), 

but at a simultaneous permutation of instants of time and indexes we have 

K zy (t, t') = Kyx (t', t). (2.16) 

If the cross-correlation function Kxy is not identically equal to zero, the 
random functions X and Y are called correlated by analogy with random 
quantities; if, however, Kxy is identically equal to zero, these random func­
tions are called non-correlated functions. 
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With respect to applied problems it is convenient to use the following 
normalized cross-correlation function 

( ') Kxy (i, i') 
rxy i, i = () ('). 

tJx i tJy i 
(2.17) 

As in the case of two random quantities system we can introduce the 
correlation matrix 

K _II Kx (i, i') Kxy (i, i')11 
- Kyx (i, i') Ky (t, i') 

(2.18) 

For the system of n real random functions we have the correlation matrix 

K= (2.19) 

Considering the random functions Xj(i) as the components of the n - th 
vector, we can represent the matrix K (2.19) in a more compact form, using 
a two-vector dyadic (tensor) product (1.50): 

For complex-valued random functions, by analogy with complex-valued 
random quantities, the cross-correlation function is 

Kxy (i, i') = M [X (t) y* (t')] , (2.20) 

o 
where Y* is the centered conjugate random function. In a particular case 
where t = i' and X = Y, the correlation function (2.20) is the random 
complex function X variance, which must be positive; this occurs, if we take 
the product of the complex function X(t) into the conjugate function X*(i). 

Dx (i) = M [X (i) X* (i)] = M [(Xl (i) + i X 2 (i) ) (Xl (i) - i X 2 (i))] 

= M [ (xi + X~)] . 
Let us show that for a complex random function the condition 

Kxy (t, i') = K;x (i', i) . (2.21 ) 

is satisfied. The correlation functions Kxy(i, i') and Kyx(i', i) in their more 
comprehensive form are 
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Kxy (t , t') = M [(Xl (t) + iX2 (t» (YI (t') - iY2 (t'»] 

= K X1Y1 + K X2Y2 + i (KXIX2 - K X2Y1 )· 

Kyx (t', t) = M [(YI (t') + iY2 (t'» (Xl (t) - iX2 (t»] 
= K X1Y1 + K X2Y2 - i (KX1Y2 - K x2yJ . 

Hence the conjugate function K;x (t' , t) is equal to Kxy (t, t'). 
In accordance with (2.21) the elements of the correlation matrix for com­

plex random functions, symmetric about the principal diagonal, are complex 
conjugate functions. 

Example 2.3. There are the following two random functions Xl = 
Acoswlt and X2 = Bcosw2t. The amplitudes A and B are random quanti­
ties with known probability characteristics mA , mB, D A , DB and K AB . It is 
required to determine the cross-correlation function and its value at t = t'. 

According to (2.15) 

At t = t' 

Example 2.4. Figure 2.5 shows a beam loaded with concentrated random­
magnitude moments Mxo and MyO having known probability characteristics 
m x , my, D x , Dy and Kxy. It is required to determine: 1) the mathematical 
expectation and variance of the maximum normal stress in an arbitrary sec­
tion; 2) the maximum value of the maximum normal stress in the dangerous 
section on the assumption that the maximum stress has normal distribution. 

y 

Fig. 2.5. 
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The bending moments in an arbitrary section are 

Mx = Mxo (1 - ~) j 

My = MyO (1 - ~) . 
The maximum normal stress in an arbitrary section is 

Mx My (Z) (Z) CTmax = J;; + Jy = alMxo 1 -1 + a2MyO 1 -1 ' 

where Xl, YI are the coordinates of the outermost from the neutral line point, 
al = yI/Jx, a2 = xI/Jy • 

The mathematical expectation of the maximum normal stress is 

meTm = al (1 - T) mx + a2 (1 - ~) my. 

The correlation function of the maximum normal stress is 

KeTm (z, z') 

=M [(aIMxo + a2Myo)2 (1- ~) (1- ~')] 

= (1-~) (1- ~') [a~M [M;oJ + 2ala2M [MxoMyol +a~M [M;oJ] 

= (1- ~) = (1- ~') (a~D", + 2ala2K",y + a~Dy) . 

The variance of the maximum normal stress in an arbitrary section is 

DCTm = (1- ~/ (a~Dx + 2ala2Kxy + a~Dy) . 
With the respect to the example considered the dangerous section is the 

section at Z = 0, therefore we obtain maxCTm using the three sigma rule 

If the limit state of the bar is determined by the appearance of plastic 
deformations, the structure parameters of the bar at known random loads 
must be selected from the condition 

CTy 
maxCTm =-, 

ny 

where CTy is the yield stress of the bar material, ny is the safety factor. 
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2.4 Random Functions Linear Transformations 

Let us consider the linear transformations of random functions, when the 
relation between "input" and "output" is established using linear operators 
L: 

Y (t) = L [X (t)]. (2.22) 

We keep in mind the statistical relation between input and output, when 
it is necessary to determine the probability characteristics of the Y(t) from 
the known probability characteristics of the random function X(t). 

Let us consider the linear transformations of random functions most fre­
quently used in the analysis of random vibrations. 

1. If the input X and the output Y are random n-dimensional vectors 
and related by the linear relation of the form 

Y (t) = B (t) X (t) , 

where B(t) is the matrix n by n, whose elements bi ; (t) are nonrandom func­
tions, the mathematical expectations of the components Yj of the vector Y, 
the correlation matrix K(t, t') and the cross-correlation functions KYiYj are 
equal to 

(2.23) 

[
KY1Yl KY1Y2 ... KYlynj 

K(t,t')=M[y(t)®y(t')]= .; .. ;. ,::: .;. 

KY1Y1 KYnY2 ... KYnYn 

where 

[
0 0 ] n n 

KYiYj = M Yj (t) Yi (t') = ~ ~ bip (t) bjv (t') Kzpzv (t, t'). 

The variance of the vector Y components is 

n n 

DYi (t) = L Lip (t)jV (t) Kzpzv (t, t'). (2.24) 
p=lv=l 

2. The integral of the random function X(t) 

t 

Y (t) = ! X (tl) dtl. (2.25) 

o 
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Assuming that averaging and integration operations are interchangeable, 
the mathematical expectation is determined as 

[ 
t ] t t 

my (t) = M J Xdtl = J M [X] dtl = J mx (td dtl· 
o 0 0 

(2.26) 

The interchange of the mathematical expectation operation and other 
linear mathematical operations is used in subsequent transformations. 

The correlation function is 

K (t, t') = M [(Y (t) - my (t)) (Y (t') - my (t'))] 

{ 
t tt } 

= M [[X (td - mx (h)] dtl [ [X (t~l)) - mx (t~l))] dt~l) . 

(2.27) 

The product of the two integrals under the sign of mathematical expec­
tation in formula (2.27) is equal to the double integral 

t t' 

J J (X (tl) - mx (td) (X (41)) - mx (t~l))) dtl dt~1), 
o 0 

therefore 

Ky (t, t') 

~ M [/ I (X (td - mx (td) (x (tl'») - m" (tl'»)) dt, dtl')] 
t tl 

= J J M [(X (td - mx (t l )) (x (til)) - mx (til))) ]dtl dtil ) 
o 0 

(2.28) 

Example 2.5. The beam shown in Fig. 2.6 is under the action of the 
random distributed load q(z). The probabilistic characteristics of the load 
are known; in other words, it is the mathematical expectation mq(z) as a 
function of z and the correlation function Kq(z, z') that are known. It is 
necessary to determine the probabilistic characteristics of the reaction forces 
Rl and R2 . 
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y 

z 

I, 

Fig. 2 .6. 

Considering the beam equilibrium, we obtain the following two equations 

1, 

Rl +R2 = / q(z)dz; 
o 

1, 

R2l = / q (z) zdz . 
o 

(2.29) 

We determine the mathematical expectations of the reaction forces with 
the use of (2.29) 

1, 

mR, + mR2 = / mq (z) dz; 
o 

1, 

lmR2 = / mq (z) zdz. 
o 

o 0 

The centered random quantities Rl and ~2 are equal to 

It 

It = / (q (z) - mq (z)) (1- D dz,; 
o 
1, 

R2 = / (q(z) - mq (z)) (7) dz. 
o 

The reaction variances are equal to 
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1, II 

= / JM[qO(Zl)qO(Z)](1-D(1-~1)dZdZ1 
o 0 

II II 

= / JKq(z,zd(1-D(1-~1)dZdZ1; 
o 0 

1, II 

DR2 = / / Kq (z, zd (7) (~1) dzdz1. 
o 0 

3. The probabilistic characteristics of the random function Y (t) 
t 

Y(t)=a(t)c+ / k(t,h)X(t1)dh, 
o 

(2.30) 

where aCt), k(t, h) are nonrandom functions, c is a random quantity with 
known me and De; X(td is a random function with known mx(t) and 
Kx(t, t'). 

The mathematical expectation of the yet) is 

m,(t)~M [a(t)c+ I k(t,t')Xd"l 

t 

=a(t)M[c]+ / k(t, tl)M[X]dt1 
o 

t 

= a (t) me + / k (t, td m xdt1. 
o 

The correlation function with independent c and X is 

K, (t, t') ~ M [ (a(t)~+ I k (t, tllXdtlldtl) 

x (a (1') ~+ I k (t', 1(1)) X (t\')) dl(l)) 1 ~ a (t) a (t')M [~21 
t h 

/ / 
( ) ( I (1)) ( (1)) (1) + k t, t1 k t, t1 Kx t1, t1 dt1 dt1 . 

o 0 

(2.31 ) 

(2.32) 
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4. Let us consider the derivative of the random function 

d 
Y (t) = dt X (t) . (2.33) 

The mathematical expectation of the Y ( t) is 

M [Y (t)] = my (t) = M [dX (t)] = i.M [X (t)] = dmx (t). (2.34) 
dt dt dt 

The correlation function Ky (t, t') is 

Ky (t, t') = M [(Y (t) - my (t)) (Y (t') - my (t'))] 

= M [ ( d ~t (t)) ( d ~t~ t') ) ]. (2.35) 

The product of the derivatives under the sign of mathematical expectation 
can be represented as 

2 [ 0 0 ] dod 0, a X (t) X (t') 
dt X (t) dt' X (t ) = at at' . (2.36) 

As a result we obtain 

, _ [02 [x (t)x(t')]] 
Ky (t,t) - M at at' 

= ~M [0 () 0 (')] = a2K x (t, t') 
at at' X txt at at' . (2.37) 

If the random functions X(t) and yet) are connected by the relation 
d2 X (t) 

Y (t) = dt2 ,the correlation function Ky(t, t') is equal to 

K ( ') _ a4 Kx (t, t') 
y t, t - at2 at12 . 

For the general case when 

dnX 
Y = dtn ' 

the correlation function Ky is equal to 

a2nx 
Ky = atn atm. 

(2.38) 

(2.39) 

(2.40) 

5. The cross-correlation function of the random function X and its deriva­
tive is 
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K . = M [0 ( ) dX (t')] = M8 X (t) X (t') = 8Kx 
xx X t dt at' at' . (2.41) 

Similarly, we obtain an expression for the cross-correlation function of the 
different order derivatives of the random function X(t) 

{)P+qKx (t, t') 
Kxpxq = 8tP8t'Q , (2.42) 

where p, q are orders of the derivatives (p = 0, 1, ... , n, q = 0, 1, ... , n). 
Example 2.6. Determine a correlation function and a variance for the 

derivative of the random function X (t), if X (t) = A sin t (mA and O"A are 
known). 

The correlation function of the random function X (t) is 

Kx (t, t') = M [({A - mA) sint)({A - mA) sint')) = sin tsin t' O"~. 

Using the formula (2.37) we obtain 

Ky (t, t') = K., (t, t') = O"~ cost cost'. 

The variance is 

D., (t) = DAcos2 t. 

Example 2.7. Determine the correlation function of the random function 

Y (t) = a (t) X (t) + b (t) d~?) , 
where a (t), b (t) are nonrandom functions; X is a random function with 
known characteristics mx = 0 and Kx (t, t'). 

The correlation function is 

K (t, t') = M [y (t) y (t')] , 

or 

Ky (t, t') = a (t) a (t') M [X (t) X (t')) + a (t) b (t') M [X (t) d~t~t')] 

+ a (t') b (t) M [dX (t) X (t')] + b (t) b (t') M [dX (t) dX (t')] . 
dt dt dt' 

Since 

M [X (t) d~t)] = ~,M [X (t) X (t')) = ~,Kx (t, t'), 

after the necessary transformations we obtain 

8K 
Ky (t, tl) = a (t) a (t') Kx + a (t) b (t') 8t'X 

8K 82K 
+a(t')b(t) 8tX +b(t)b(t') atat~. (2.43) 
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2.5 The Probabilistic Characteristics of the Linear 
Differential Equations at Non-stationary Random 
Disturbances 

1. The linear non-homogeneous differential equation of the first order 

iJ + ky = X (t), 

where X (t) is a random function with known mx (t) and Kx (t, t'). 

(2.44) 

The equation (2.44) describes the physical process varying in time, such as 
the work of an engine, shown in Fig. 2.7. In steady-state conditions, the engine 
moment Mq (t) is balanced by the moment of resistance Mr (w) depending 
on angular velocity wand load moment MI. The random variation of the 
load moment by LlMI will alter the angular velocity by Llw and lead to the 

f " I J dLlw h J' h . occurrence 0 mertia moment equa to dt' were IS t e rotatmg parts 

moment of inertia reduced to the axis of the shaft. 

J 
Co) 

---E-C 
Fig. 2.7. 

The equation of the engine disturbed rotation motion is 

(2.45) 

where LlMr is the moment of resistance variation. At small deviations from 
steady-state operating conditions we can assume that LlMr = k1Llw. 

Then the equation (2.45) will take the form similar to the equation (2.44): 

dLlw + kl Llw = LlMr. 
dt J J 

(2.46) 

General solution of the equation (2.46) with arbitrary right-hand side 
(putting y = Llw and LlMI (t) / J = X (t) is 

t 

Y = ce- kt + ! e-k(t-td X (td dt}, (k = i) . 
o 

(2.47) 
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The probabilistic characteristics of the random moment LlMI (mLlMI (t) 
and KLlMI (t, t')) and hence the X(t) are considered to be known. 

At t = 0, y (0) = Yo, therefore c = Yo. The initial value of Y may be both 
random and nonrandom. 

Let us consider a case where the initial value Yo is random, with random 
quantity Yo and random function X (t) being independent. We consider that 
the probabilistic characteristics of Yo are known and equal to mo and Do. 

The mathematical expectation of the equation (2.47) solution and the 
correlation function will be: 

t 

my = M [Yoe- kt ] + J M [e-k(t-tt> X (t1)] dtl 
o 

t 

= moe-kt + J e-k(t-tdmx(tl)dtl; 

o 

K. (t, t') ~ M [{ y,. -.. + I e -.(t-t,) X (h) dt, } 

x {;;o.-"'" + 1 .-.(t'-t"') X (t\')) dt\') }]. 

o 0 

(2.48) 

(2.49) 

Since Yo and X (t) are independent, after the necessary transformations 
we get 

Ky (t, t') = Doe-k(Ht') 

t t' 

+ J J e-k(t-hle-k(t'-tp»)Kx (tb t~ll)dtld41l. 
o 0 

(2.50) 

In order to obtain the variance it is necessary to put t' = t in the expres­
sion (2.50) after the integration. 

Let us find the correlation function and the variance ofthe equation (2.47) 
solution, if LlMI is the random function with zero mathematical expectation 
and constant variance Dl (at t = O,y = 0). After the necessary transforma­
tions we obtain from (2.50) 

Ky(t,t') = ~; (e- kt _1) (e- kt' -1); 

( ) Dl (-kt )2 Dy t = k2 e -1 . 
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When solving applied problems, it is often necessary to know the prob­
abilistic characteristics of the derivatives y. The information that can be 
obtained by considering the cross-correlation function Kyy happens to be 
useful. From equation (2.44) we obtain an expression for the derivative 

yet) = -ky(t) + X (t). (2.51) 

The same expression can be obtained by the differentiation of solution 
(2.47) with respect to t. When differentiating an integral in the right-hand 
side of the relationship (2.47), one must use the rule of integral differentiation 
with respect to the parameter 

or 

f3(t) 

aJ J at = f (t, td dtl 
a(t) 

f3(t) 

J af (t, h) d{3 do 
= at ati + dt f (t, /3) - dt f (t, a (t)) . 

a(t) 

When differentiating (2.46) with due account of (2.50), we obtain 

if ~ -k ( ",-" + ! e -'(I-I,) X (t,) dt,) + X (t) 

y = -ky + X (t). 

(2.52) 

The mathematical expectation and the correlation function for y are 

my (t) = -kmy (t) + mx (t) ; 

K. = M [dY(t) dY(t')] 
y dt dt' 

= M [( -k Y (t) + X (t)) (-k Y (t') + X (t'))] 

= k2 Ky - kM [Y (t) X (t')] - kM [Y (t') X (t)] + Kx· 

Since the random initial deviation Yo and X (t) are independent, after the 
necessary transformations the mathematical expectations will be 

t 

M [Y (t) X (t')] = ! e-k(t-td Kx (tl' t') dtl; 

o 
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t' 

M [Y (t') X (t)] = j e _k(t'_t;ll) Kx (t~1), t) dt~l). 
o 

Finally we obtain 

t 

K- (t t') = k2 K (t t') K (t t') + j e-k(t-ttl K (t t(l») dt y , y, x, x 1, 1 1 

o 
t' 

+ j e _k(t'_t;ll) K (t(l) t) dt(l) 
Xl' 1· 

o 

The cross-correlation function is 

' 0 dy(t") 
[ 

0 1 K yiJ (t, t) = M Y (t) dt' . 

After the necessary transformations we obtain 

t 

K yiJ (t, t') = -kKy (t, t') + j e-k(t-ttl Kx (t1, t') dt1. 

o 

(2.53) 

(2.54) 

2. The linear equation of the second order with constant coefficients and 
the random right-hand side 

jj + 2ny + p~y = X (t) . 

General solution of equation (2.55) can be represented in the form 

t 

Y = cd1 (t) + c2!2 (t) + j 9 (t - t1) X,(td dt1, 
o 

where 

!I = e-nt cospt, h = e-nt sinpt; 

The expression for the time derivative of y is 

t 

.. jag(t-td y = cd1 + C2!2 + at X(h)dt1. 

o 

(2.55) 

(2.56) 

(2.57) 
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The arbitrary constants Cl and C2 can be determined from the initial 
conditions (t = 0, y = Yo, Y = Yo) 

Cl = Yo, C2 = (Yo + nyo)/p. 

Expression for the y takes the following form 

t 

Y = YolI2 + ~ 12 (t) + / 9 (t - tl) X (tl) dtb 
o 

where 

n 
1I2 = II + -h· 

p 

(2.58) 

In determining the probabilistic characteristics one can use the results of 
sect. 2.4. 

Considering the initial values Yo, Yo and the disturbance X (t) as inde­
pendent random quantities with known probabilistic characteristics, let us 
determine the mathematical expectation 

t 

my = mYOlI2 + myoh + / 9 (t - tJ) m", (tl) dt1 

o 

and the correlation function 

Ky=M[y(t), y(t')] 

= 1I2 (t) 1I2 (t') DyO + 12 (t) 12 (t') DyO 
t t 

+ J f 9 (t - t1) 9 (t' - tP)) K", (tb tP)) dt~l)dtl. 
o 0 

(2.59) 

(2.60) 

3. Let us consider a linear non-homogeneous equation of the second order 
with variable coefficients 

y + al (t) Y + a2 (t) y = x (t) . (2.61) 

Assuming that y = Zl, Y = Z2, let us represent the equation as a system 
of two equations of the first order 

or 

{ 
~l + alZl + a2Z2 = x, 
Z2 - Zl = 0 

Z + A(t) Z = f, (2.62) 
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where 

The equation (2.62) solution takes the form 

t 

Z = B (t) C + ! G (t, td f (t1) dt1, (2.63) 

o 

where B (t) is the fundamental matrix of homogeneous equation (2.61), sat­
isfying the condition B (0) = E; E is the identity matrix and G (t, t1) is the 
Green matrix 

G (t, td = B (t) B-1 (td , (2.64) 

C is the initial values vector. 
The components of the vector C may be both deterministic and random. 

Let us assume that their probabilistic characteristics (vector C is equal to 
Z(O)) m Cj , DCj and K CiCj are known. The mathematical expectation of the 
vector Z (at random initial values) is 

t 

mz=B(t)mc +! G(t,h)m/(h)dh 
o 

or in its scalar form 
t 

m Z1 = my = bn mCl + b12m C2 + ! gnm/dt1; 
o 

t 

m Z2 = my = b21 m C1 + b22m C2 + ! g21m/dt1. 
o 

(2.65) 

The correlation functions matrix for the components of the vector Z is 

According to the accepted condition that the components of the C and f 
vectors are independent, we have 

t t' 

+ ! ! M [G(t, t1)f®G(t', t~)f(t')] dt1dtl1). (2.66) 

o 0 
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After the necessary transformations we obtain 

t t' 

K = Kc + ! ! KJdtldt~. 
o 0 

The elements of the matrixes Kc and K J are 

Kc;c; = bil (t) bjl (t') K C1C1 + bil (t) bj2 (t') K C1C2 

+ bi2 (t) bjl (t) K C2C1 + bi2 (t) bi2 (t') K C2C2 ' 

KJd; (tl' tD = gil (td gjl (tl) Kx (h, tD· 

(2.67) 

The probabilistic characteristics of the equation (1.155) solution in the 
vector-matrix form, obtained by way of this example are readily extended to 
a case, where vector Z has n components. 
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3.1 Probability Characteristics of Stationary Random 
Functions 

Random processes that proceed in time with approximate homogeneity and 
have the form of continuous random oscillations about a certain mean value 
are widespread. Their probability characteristics do not depend on the choice 
of time reference point, i.e. are invariant relative to the shift of time. Accord­
ingly, a random function X (t) is defined as stationary, if the probability 
characteristics of a random function X (t + tf) at any tf coincide with the 
appropriate characteristics of X (t). This occurs only when the mathematical 
expectation and the variance of a random function do not depend on time, 
and the correlation function depends only on the difference of arguments 
(tf - t). The stationary process may be considered as a process, that pro­
ceeds in time without limit. In this context the stationary process is similar 
to the steady-state vibrations, whose parameters are independent of a time 
reference point. 

In applied problems, where we have to deal only with the moments of the 
first two orders - mathematical expectations and correlation functions - it is 
enough to consider a random function as stationary given the constancy of its 
mathematical expectation and variance and the dependence of the correlation 
function solely on the difference of arguments. Such random functions will be 
referred to as stationary functions in the broad sense of the term [29]. 

A stationary random function X (t), whose distribution laws of all possible 
orders fn (Xl, X2,···, Xn , t l , t2, ... tn ) depend only on intervals t2 - h, t3-
-tl' ... , tn - tl, and are independent of their position on the axis of time, 
will be referred to as the stationary function in the narrow sense of the term. 

Below we shall interpret stationary functions in the broad context and 
discuss only those of them, which are most often used in applied problems. 
Let us dwell now on the principal properties of stationary functions. 

As indicated above, a random function X (t) is called stationary, if its 
mathematical expectation and variance do not depend on time, i.e. 

mx (t) = const, Dx (t) = const. (3.1) 

Let us consider the correlation moment Kx (t, tf) of the random stationary 
function X (t) (Fig. 3.1) for two instants of time separated by an interval T. 
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For a stationary process the correlation moment is independent of the specific 
values t and t', and only depends on their difference t' - t = 7, i.e. (Fig. 3.1) 

Kx (t, t') = Kx (t, t + 7) = Kx (7). (3.2) 

X(f) 

Fig. 3.1. 

It follows from the relation (3.2) that the correlation function Kx (7) of a 
stationary random process is a function of one argument 7. 

As the correlation function is symmetric (2.8) 

Kx (t, t') = Kx (t', t), 

and assuming that t' - t = 7, we obtain 

Kx (7) = Kx (-7), 

that is the correlation function is an even function. 
The random function variance is equal to 

Dx (t) = Kx (t, t) . 

Therefore, for the stationary random function we have 

The normalized correlation function 

Px (7) = Kx (7) 
Dx 

is often used instead of the correlation function Kx (7). 
As Ipx (7)1::; 1, it follows from (3.5) that: 

(3.3) 

(3.4) 

(3.5) 
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The plots of autocorrelation functions K (7) most frequently used in ap­
plied problems are shown in Appendix 3. 

Appendix 3 contains, among its other K (7) functions, the following cor­
relation function, proportional to the Dirac delta function and known as 
stationary white noise or delta-correlated random process: 

K (7) = Sod (7) . (3.6) 

where So is a constant factor; 8 (7) is the Dirac delta function (See Ap­
pendix!). 

The white noise is defined as a random process, with the values of the 
random function X (t) being non-correlated for arbitrary close instants of 
time. A random process of the white noise type cannot be realized in real 
conditions, because, firstly, random functions at sufficiently close instants 
of time (at very small 7) are, in fact, always dependable and, secondly, as 
(3.6) shows, at 7 = 0 the process variance is equal to infinity Therefore the 
realization of such process requires an infinite power, that is impossible to 
obtain in real conditions. Nevertheless, random processes of the white noise 
type are widely used in many divisions of statistical dynamics. 

EXaDlple 3.1. The task is to determine, whether the random function 

n 

X (t) = L (Aj COSWjt + B j sinwjt) 
j=l 

(3.7) 

is a stationary random function, if Aj and Bj are random mutually inde­
pendent quantities with zero mathematical expectations and equal variances 
(DA; = DB; = Dj ). 

The mathematical expectation of the random function X (t) is zero. 
The correlation function is 

K. (t, t') ~ M [ (t. (Aj eo'Wjt+ Hj 'inWjt») 

x (~(Ak coswkt' + Bk sinWkt')) ]. 

Some transformations yield 

n 

K", (t, t') = L Dj COSWj (t - t'). 
j=l 

(3.8) 

The obtained expression (3.8) depends only on the difference t - t', Le. 
X (t) is a stationary function. Then the random function X (t) variance will 
be 
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n 

Dx = Kx (0) = LDj. (3.9) 
j=l 

Example 3.2. The task is to determine the correlation function K x , if 
the random function X is 

n 

X = L Ajeiwjt , 

j=l 

(3.10) 

where Aj = A lj + iA2j is a complex amplitude; and j is the imaginary unit. 
The non-correlated random quantities A lj and A2j have zero mathemat­

ical expectations and equal variances. 
Let us take advantage of the formula (2.20), (assuming that Y* (t') = 

= X* (t')) 

K. (t, t') ~ MIX (t) X' (1')] ~ M [ (t, Aj ,,"") • (t, Ak"W>") 1 
where AI:; = Alk - iA2k · 

By manipulation we shall get 

n n 

Kx (t, t') = LM [AjA;] ei(t-t')w = L2DjeirW . (3.11) 
j=l j=l 

It follows from (3.11), that the random function (3.10) at mlj = m2j = 0, 
D lj = D 2j = D j is a stationary random function for the non-correlated A lj , 
A2j . 

Let us consider a system of two random functions Xl (t) and X 2 (t). 
The two random functions Xl (t), X 2 (t) of the same argument are called 

stationary connected, if their cross-correlation function depends on a differ­
ence of arguments, i.e. 

(7 = t' - t). (3.12) 

If condition (3.12) is satisfied for the random stationary functions Xl and 
X 2 , they are considered stationary and stationary connected. It follows from 
the cross-correlation function property, that 

K X1X2 (t, t') = K X1X2 (7) = K;2 Xl (-7) 

or for real-valued random functions 

(3.13) 

In the general case, cross-correlation functions are not even functions of ar­
gument 7. 
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The system Xj (t) (j = 1, 2, ... , n) of stationary and stationary con­
nected random functions is characterized by the correlation matrix 

XlXl XIXn 
[

K (7)············ K (7)] 
K(7)= ~ ..... (~.).::::::::::::.~ ..... (~.) . 

XnXl XnXn 

Example 3.3. The task is to determine the cross-correlation functions 
Kxy (t, t') and Kyx (t, t') of the random stationary functions 

X (t) = Al coswt + BI sinwt; 

Y (t) = -AI sinwt + BI cosw, 

where AI, Bl are non-correlated random variables with a zero mathematical 
expectation and equal variances D. 

The cross-correlation functions (assuming that t' - t = 7) are 

Kxy (t, t') = M [X (t) y (t')] = Dsinw7; 

Kyx (t, t') = M [y (t) X (t')] = -Dsinw7. 

It follows from the relations obtained, that the random functions X (t) 
and Y (t) are stationary connected. If we replace 7 by -7 in the expression 
for K yx , the condition (3.13) fulfills 

Kxy (7) = Kyx (-7). (3.14) 

Fig. 3.2. 

The plot of the function Kyx (-7) is a mirror reflection of the plot of the 
function Kxy (7) (Fig. 3.2). 

3.2 The Ergodic Property of a Stationary Random 
FUnction 

To obtain the stationary random function characteristics (the mathematical 
expectation mx and the correlation function Kx (7)) we need a considerable 
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number of random function X (t) realizations. The approximate values of 
mx and Kx (r) may be determined on the basis of realization records. The 
question arises: is it possible to obtain the same characteristics using only 
one realization of the random function X (t). As the random process is sta­
tionary and proceeds in time homogeneously (the mathematical expectation 
does not depend on time, and the correlation function is independent of the 
origin), we may well assume, that a single realization is sufficient for the ran­
dom function characteristics determination. The possibility of obtaining the 
probability characteristics of a stationary random function on the basis of its 
single realization is very important in the practical context, as this allows us 
to decrease the extent of experimental investigations, and thus to diminish 
the expenditures. 

Stationary random functions, whose probability characteristics can be de­
termined through their single realization are referred to as random functions 
with an ergodic property, or simply ergodic stationary random functions. 
The ergodic property is a property making it possible to judge the statistical 
properties of all set of realizations of a random function on the basis of its 
single realization. The time-mean value (on rather large observation interval) 
of a random function X (t) possessing the ergodic property is approximately 
equal to the number-of-observations mean value, i.e. 

T 

mx ~ ~ J X (t) dt, (3.15) 

o 

T 

where mx is the value averaged over the collection ofrealizations; ~ J X (t) dt 

o 
is time-mean value for a single realization. The task is to find out, under what 
conditions the approximate relation (3.15) is fulfilled. 

The integral in the right-hand side of the relation (3.15) has different 
random values for different realizations, therefore 

T 

YT = ~ J X(t)dt, (3.16) 

o 

where YT is a random quantity. 
The necessary and sufficient condition of the approximate equality (3.16) 

fulfillment is a small value of the random variable YT variance. The random 
variable YT variance is equal to 
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D [Yt] = M [(YT - m X )2] 

~ M [ { ~ I (X - m x ) & rJ T T 

= ;2! ! Kx (t - t') dtdt'. 

o 0 

(3.17) 

It follows from (3.17), that the expression (3.15) for the mathematical 
expectation of a stationary random function will be an exact equality at 
sufficiently large T 

T 

mx =lim~! X(t)dt, 
o 

only provided that 

T T 

lim D [YT ] = lim T\!! Kx (t - t') dt dt' = O. 
T-too T-too 

o 0 

(3.18) 

(3.19) 

Let us transform the expression (3.19) by introducing a new variable 
T = t - t'. When t and t' vary within the interval (0, T), T varies in the 
interval (-T, T) . Then 

T T T (T-t
l 

) 

1= ;2! ! Kx(t-t')dtdt' = ;2/ ! Kx(T)dT dt'. 
o 0 0 -~ 

(3.20) 

Since Kx (T) = Kx (-T), it follows, that Kx (T) is a function of ITI. Chang­
ing the order of integration, we shall get 

1= ;27 [7 KX(T)dt'] dT= ~ 7 (1_1;1) Kx(T)dT. 

-T ITI -T 

(3.21) 

As (1 - 1;1) and Kx (T) are even functions, 

T 

1= ~! (1- ~)Kx(T)dT. (3.22) 

o 

It results from (3.22) that for the random stationary function X (t) to 
become ergodic (fulfillment of the condition (3.19)) its correlation function 
must satisfy the following necessary and sufficient condition: 
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T 

i~ ~ j (1 - f) Kx (r) dr = o. (3.23) 

o 

The sufficient condition of a stationary random function ergodicity is 
an unbounded decrease of its correlation function Kx (r) absolute value at 
Irl-+ 00. 

Since the correlation function Kx (r) of a stationary random function can 
be represented as 

K x (r) = M [X (t) X (t + r) ] (3.24) 

and does not depend on time t, it can also be determined by a single real­
ization through averaging the right-hand side of the expression (3.24) with 
respect to time t i.e. 

T 
1 j 0 0 Kx(r) ~ T X(t)X(t+r)dt, 

o 

or, through proceeding to the limit 

T 

Kx(r) = lim -T1 jX(t)X(t+r)dt. 
T-+oo 

(3.25) 

o 

The relation (3.25) is true, provided the fulfillment of the sufficient con­
dition [29]: at Irl -+ 00 Kx (r) -+ o. 

Example 3.4. Determine, whether the stationary stochastic function 
X (t) with a correlation function 

is ergodic. 
By substituting Kx (r) in the relation (3.23), we'll get 

T 

lim !.. j (1 - 2:.) Dxe-a.,. dr 
T-+oo T T 

o 

. 1 [ 1 (-aT ) Dx ( T -exT 1 -exT 1)] 0 = lim - -- e -1 - - --e - -e + - =, 
T-+oo TaT a a 2 a 2 

which shows that the stationary random function X (t) is ergodic. 
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3.3 Derivatives and Integrals of Stationary Functions 

3.3.1 Probability Characteristics of Stationary Random Function 
Derivatives 

Let us use the expressions for probability characteristics of non-stationary 
function derivatives obtained in section 2.4. 

If 

Y(t) = :tX(t) , (3.26) 

then the mathematical expectation my of the stationary function X (t) is 
zero 

The correlation function (2.37) for the stationary function X (t) is 

K ( ') _ {PKx (t, t') _ 82KX (7) 
y t, t - 8t8t' - 8t8t' . 

Since 7 = t' - t, then proceeding to a derivative with respect to 7, we get 

(3.27) 

Similarly, it is possible to determine the correlation function of the second 
derivative and derivatives of a higher-order 

(3.28) 

It follows from (3.28), that stationary function derivatives are stationary 
functions, as their correlation functions solely depend on 7. 

Let us consider a number of examples of differentiating the correlation 
function of a stationary random function. 

The task is to determine the correlation functions Ky: 

d 
Y= dtX(t). 

If 

1) Kx = Dxe-alTlj 

2) Kx (7) = Dxe-alTI (1 + a 171) j 

3) Kx = Dxe-alTI cos {J7. 
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As 

Then after the twofold successive differentiating of Kxwith respect to r, 
we'll get (See Appendix 1): 

1) K = -~ (_Dxae-aITldlrl) = Dxa~ (e-aITlsignr) 
y dr dr dr 

[ I I · 2 I I d sign r] = Dxa -ae-a T (sIgn r) + e-a T dr 

= Dxa [28 (r) - a (sign r)2] e-aIT1 ; 

2) Ky = -Dx d~ [-ae-aITlsign r (1 + air!) + ae-alTlsign r] 

= Dxa2 d~ [e-aITlsignrlrl] = Dxa2 d~ (e-aIT1r) 

= Dxa2 [-ae-aITlsign r . r + e-aIT1] = Dxa2e-alTI (1 - air!) ; 

As another example, let us obtain an expression for the cross-correlation 
o 

function of the stationary random function X (t) and its derivative X (t): 

(3.29) 
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It follows from (3.29) that the stationary function X (t) and its first deriva­
tive are stationary-connected random functions. 

Since Kx (7) is an even function of 7, then 

dKx (7)1 =0, 
d7 7=0 

i.e. the stationary function X (t) and its derivative for the same instant of 
time are non-correlated random quantities. The correlation functions of the 
first two derivatives of the stationary random function X (t) are equal to: 

Kxx = -Kx (7), Kxx = Kx (7), 

Kxx = -Kx (7), Kxx = k"x (7), 

which shows that they are stationary connected. 

3.3.2 Probability Characteristics of the Integral of Stationary 
Random Functions 

Let us consider the integral (2.25) of the stationary random function X (t), 
whose correlation function is equal to 

Kx (7) = Dx COSW7. 

The correlation functions Ky (t, t') and Kx (t, t') are related by the equation 
(2.28). In the case considered we have (7 = ti - tl) 

or 

t t f 

Ky (t, t') = J J Kx (t~ - tl) dtl dt~, 
o 0 

t t f 

Ky(t, t') = J J Dxcosw(t~ -h)dtldt~. 
o 0 

By integrating we get: 

Ky (t, t') = -; COSW7 + -;. (1 - coswt - coswt'). 
w w 

It follows from the last formula that the random process yet) is not stationary 
that is (and it is also true for the general case) the integral of the stationary 
function does not have the stationarity property. 
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3.4 The Spectral Representation of Stationary Random 
Processes 

The plots of realizations of the random functions Xl (t) and X 2 (t) (see 
Fig. 2.3 a, b) shows great differences in the variations of this functions in 
time. 

A nonrandom function - the correlation function Kx (t, t'), or Kx (T) for 
stationary process, - that reflects the internal structure of a corresponding 
random process, for example, the process shown in Fig. 2.3 b, has been in­
troduced to estimate random functions behavior in time. All realizations of 
this process have an obvious oscillatory nature. This suggests that we should 
characterize this process by its spectral properties, the way we did with the 
deterministic oscillatory process. We know, that, if any oscillatory process is 
represented as a sum of harmonic functions with different frequencies, the 
function describing the distribution of amplitudes in frequency is referred to 
as the spectrum of this process. It shows what components dominate in the 
given oscillatory process. Let us consider the random function 

n 

X (t) = 2.::: (Aj COSWjt + Bj sinwjt) , 
j=l 

(3.30) 

where A j , B j are independent random quantities with zero mathematical 
expectations and equal variances (DAj = DBj = Dj ). It has already been 
shown (example 3.1), that X (t) is a stationary function. Its correlation func­
tion Kx (T) equals 

n 

Kx (T) = 2.::: Djwj cos WjT. 
j=l 

At T = 0 we get the variance of the random function X (t) 

n 

Dx = 2.::: Dj (Wj). 
j=l 

(3.31) 

(3.32) 

The formula (3.32) shows, that the variance Dx is distributed in different 
frequencies. The qualitative nature of Dx distribution in frequencies is shown 
in Fig. 3.3. The spectrum shown in Fig. 3.3, is referred to as the discrete 
spectrum. The variance Dx is finite; therefore as the number of terms n 
approaches infinity, we may consider that amplitude variances Dj are small 
quantities LJ.Dj , i.e. 

00 

Dx = 2.:::LJ.Dj (Wj). 
j=l 

(3.33) 
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Fig. 3.3. 

As the number of terms increases, the discrete spectrum will approach the 
continuous spectrum, where the elementary variance L\Dj (Wj) corresponds 
to the small interval of frequencies L\Wj. As L\Dj is small, let us plot the 

L\D. 
ratio ~, characterizing the average (finite) variance density on the axis of 

LlWj 
ordinates. 

Let us introduce the notation 

L\D· 
Sx(Wj) =~. 

LlWj 
(3.34) 

for the average density of variance. The average density of variance is a finite 
number. The plot of the discrete average density of variance is similar to that 
shown in Fig. 3.3. 

The correlation function (3.31) at large n with due account of (3.33) and 
(3.34) is equal to 

n 

Kx (T) = L Sx (Wj) L\Wj COSWjT. 
j=l 

00 

In the limit at n -+ 00 we have Wj -+ w; L\Wj -+ dw; L 
j=l 

and get 

00 

Kx (T) = j Sx (w)coswTdw. 

o 

00 

-+ j;S(Wj)-+S(W) 
o 

(3.35) 

The function Sx (w) is referred to as spectral density. Since the spec­
tral density characterizes the variance distribution, it is always positive 
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(Sx (w > 0)) and an even function of w 

S (w) = S ( -w) . (3.36) 

Taking the inverse Fourier transform of the above formula, we obtain another 
useful relation 

00 

Sx (w) = ~ J Kx (r) coswrdr. 
o 

(3.37) 

We can obtain a more general relation (3.37) if we consider a random function 
of the form 

n 

X (t) = L AjeiWjt , 

j=1 

where Aj are independent complex random quantities with zero expectations 
and equal variances. Under these conditions the correlation function Kx is 

n 

Kx (r) = LDjeiWj'T, 
j=1 

or at n -+ 00 

00 

Kx (r) = J Sx (w) eiWT dw. 
o 

Using the formula of the inverse Fourier transform, we get 

00 

1 J . Sx (w) =:; Kx (r) e-tWT dr. 

o 

(3.38) 

(3.39) 

(3.40) 

If we carry out the summation in the expression (3.38) from -n to +n, we'll 
get (at Inl -+ 00) 

00 

Kx (r) = J Sx (w) eiWT dw, (3.41) 

-00 

(3.42) 

-00 

The relationships (3.41) and (3.42) are referred to as Wiener-Khintchin 
formulas. The relationships (3.35) and (3.37) represent particular cases of the 
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formulas (3.41)-(3.42), with the imaginary parts of their integrals being zero, 
which occurs, when the functions Sx (w) and Kx (7) are even. 

The variance of a stationary function is connected with spectral density 
by the relationship 

00 

Dx = Kx (0) = I Sx (w) dw (3.43) 
-00 

or 

00 

Dx = Kx (0) = 2 I Sx (w)dw. 
o 

Let us consider another version of deriving the relationship (3.41). For 
this purpose we shall use the representation of a centered random function 
X (t) in a frequency domain (Fourier transform) 

00 

X (t) = I Xo (iw) eiwtdw. 
-00 

We determine the correlation function of the complex function 

Kx (t, t') = M [X (t) X* (t')] 

= M [II Xo (iw) X~ (iw') eiwte-iw't'dWdW'] 

or 

00 00 

Kx (t, t') = M I I M [Xo (iw) X~ (iw')] ei(wt-w't')dw dw'. (3.44) 
-00 -00 

For a stationary function the correlation function depends on a difference of 
time instants. Therefore, if X (t) is a stationary function, then the correlation 
function Kx will depend on the difference of time instants, if we assume that 

M [Xo (iw) X~ (iw')] = Sx (iw') d (w' - w). (3.45) 

Substituting (3.45) in the right-hand side of the relationship (3.44) and inte­
grating over w', we get 

00 

Kx (t, t') = I Sx (w) eiw(t-;-t')dw = Kx (7), (t - t' = 7). 
-00 
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3.4.1 Spectral Densities of Stationary Function Derivatives 

The following correlation functions of stationary function derivatives have 
been obtained in Sect. 3.3: 

d2Kx 
K± = - dr2 ' 

Since 

00 

Kx = ! Sx (w) eiw'T dJ.u, 

-00 

we have 

00 

K± = ! Sx (w) w2eiw'T dJ.u. 
-00 

(3.46) 

It follows from (3.46) that the spectral density of the derivative of the sta­
tionary function X (t) is 

(3.47) 

Similarly, we obtain the spectral density of the second derivative (and so 
forth) 

(3.48) 

3.4.2 Determination of Spectral Density (Examples) 

Example 3.5. The correlation function of the random stationary function 
X (t) (Fig. 3.4) is 

Kx (r) = Dxe-al'Tl. 

Using formula (3.42), we get 

-00 -00 

= ~; [1 eCa-iw)'T dr + j e-Ca+iw)'T dr] 
-00 0 

(3.49) 
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KxC.'t) 

Fig. 3.4. 

OJ 

Fig. 3.5. 

The plot of Sx (w) versus w is shown in Fig. 3.5. 
Example 3.6. The correlation function Kx (T) is equal to 

(a> 0). 

Since 

cos /3 = ~ (ei13T + e -iI3T) , 

we get 

or 

-00 

o 
Dx / .,. .,.). Sx (w) = - eaT (e'''T + e-,,,T e-·wTdT 
47r 

-00 

00 

+ ~; ! e(JlT (ei13T + e -iI3T) eiWT dT. 

o 
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By manipulations we get 

( Dx [a a 1 Sx w) = - 2 + 2 • 
271" a 2 + (w + ,8) a 2 + (w - ,8) 

(3.50) 

The behaviour of Sx (w) as a function of w for: 1) a = 1, ,8 = 2 and 2) a = 3, 
,8 = 2 is shown in Fig. 3.6 (at Dx = 1). 

0.2 

Fig. 3.6. 

It follows from the plots, that at a = 1 (curve 1) the random function 
spectrum exhibits a pronounced maximum in the frequency area w = ±,8. At 
a = 3 (curve 2) the spectral density remains almost constant in a considerable 
range. 

Example 3.7. The correlation function has the form 

Kx (T) = Dxe-alrl (COS,8T+ ~sin,8ITI) 
( ) a I I ei ,6lrl - e- i .6l r l 

=Kx1 (T)+Dxfje-ar 2i 

The spectral density is 

S" (w) ~ si') (w) + ~:.; [Z e-*I+"I,I-'"', dT - Z e-ol'H""I-<., dT 1 
The first term S~l) (w) is equal to the spectral density of the previous example. 
Let us consider the terms depending on integrals, that can be transformed to 

-00 -00 



www.manaraa.com

3.4 The Spectral Representation of Stationary Random Processes 91 

where al = a - i{3, a2 = a + i{3. 
Thereupon each of these terms is represented as 

= 0 = 
/ e-O<liTi-iwTdT = / eCO<l-iw)TdT + / e-CO<l+iw)TdT, 

-= -= 0 

= 0 00 

/ e-O<2i Ti-iwT dT = / eCO<2-iw)TdT + / e- CO<2+iw)TdT. 

-00 -= 0 

The terms obtained are easily integrated and by manipulations we get the 
following expression for a spectral density 

Example 3.8. The correlation function is 

The spectral density is 

00 

1 / 2 2 . Sx (w) = Dx- e-O< T -,wr dT. 
271' 

-00 

Let us take advantage of the well-known formula 

/

00 2 B C pi { AC - B2 } 
e-Ax ±2 x- dx = VA exp A (A> 0). 

-00 

In the case considered A 
As a result we get 

zw; C 

Dx H. {w2 } Dx {W2 } Sx(w) = - - exp -- = --exp -- . 
271' a 2 4a2 2a"fii 4a2 

Example 3.9. The correlation function is equal to 

( ) 
_o<2r2 

Kx T = Dxe cos {3T. 

The spectral density is 

(3.51) 

(3.52) 

(3.53) 

o. 

(3.54) 

(3.55) 
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Using the formula (3.53), we carry out the necessary transformations and get 

Dx [ {{W + (3)2 } {(W - (3)2 }] 
Sx (W) = 4a.;7r exp 4a2 + exp 4a2 . (3.56) 

Let us consider as the last example the stationary white noise, whose 
correlation function depends on the Dirac delta function 

Kx (7) = Sod (7). 

Let us determine the white noise spectral density 

or 

00 1/. Sx (w) = 27r Sod (7) e-,wr d7 
-00 

So 
Sx (W) = 27r' 

00 

(as / d (7) e-iwr d7 = 1). 
-00 

(3.57) 

Let us recall a transformwise formula relating the Dirac delta function 
with the Fourier integral transform, namely 

00 00 1/.1/ 0(7) = 27r e'wr dw or 0 (7) = 27r cosw7dw. (3.58) 

-00 -00 

It follows from the result obtained, that the spectral density of the sta­
tionary white noise is constant and equal to So. As stated above, the white 
noise variance is equal to infinity. It takes an infinite power to produce such 
random process, involving, for example, a random force that would continu­
ously obtain random increments with an infinite variance. The concept of the 
white noise is therefore a mathematical abstraction. It is highly instrumental, 
however, in the solution of many applied problems dealing with generalized 
functions. 

Appendix 3 contains plots of correlation functions and their corresponding 
spectral densities. 

3.5 Cross-Spectral Densities and Their Properties 

If the cross-correlation functions K xjxV (t, t') of the stationary random func­
tions Xj (t), Xv (t) depend on a difference of time instants (t' - t = 7), such 
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stationary random functions are referred to as stationary-connected functions 
(Sect. 3.1). 

Using a Wiener-Khintchin formula (3.42), we get a cross-spectral density 

00 

SXjXV (iw) = 2~ ! K xjxv (r) e-iw'T dr. 
-00 

It follows from (3.59) that 

00 

SXjXV (iw) = 2~ ! [Kxjxv (r) e-iw'T + K xjxV (-r) eiW'T] dr 

o 
o 00 

= ! K xjxv (r)e-iW'Tdr = J K xjxv (_r)eiW'Tdr. 

-00 0 

Since 

KXVXj (r) = K xjxv (-r), 

then 

00 

SXjXV (iw) = 2~ ! [Kxjxv (r) e-iw'T + KXVxj (r) eiW'T] dr. 
o 

(3.59) 

(3.60) 

A similar expression will be obtained for the cross-spectral density SXVXj (iw) 

00 

SXVXj (iw) = 2~ J [KxVxj (r) e-iw'T + K xjxv (r) eiW'T] dr. 

o 

By adding spectral densities (3.60) and (3.61) we get 

or 

00 

SXjXV (iw) + SXVXj (iw) = 2~ J (Kxjxv + Kxvx;) (eiw'T + e-iw'T) dr 
o 

(3.61) 

(3.62) 

The right-hand side of the relationship (3.62) is a real quantity; therefore, 
the sum of spectral densities is a real function of w. Since these spectral 
densities can be presented as a sum (just as any function depending on an 
imaginary argument) 
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SXjXV (iw) = S~~~v (w) + iS~~~v (w), 

SXVXj (iw) = S~:~j (w) + iSxVxj (w), 

it results from the relation (3.62) that 

·S(2) (w) = _S(2) . (w) 
X,X v XvX, 

therefore 

00 

s~~L (w) + S~:)Xj (w) = ~ / (Kxjxv + KxvxJ coswrdr. 
o 

(3.63) 

(3.64) 

The right-hand side of the relationship (3.64) is an even function of w, there­
fore SXiXv and SXvXi are even functions, i.e. 

S (l) ( ) - S(l) (_ ) 
ZjXv W - XjXv W, 

S (l) ( ) - S(l) (_ ) 
XLlXj W - XvX; w. 

(3.65) 

This prompts us the following general conclusion: real parts of cross-spectral 
densities are even functions of w. Let us show now, that imaginary parts of 
cross- spectral densities are odd functions of w. It follows from (3.59), that 

00 00 

S (l) () 'S(2) ( ) - 1 J' i J' . x·x W + 2 x·x W - -2 K X3'XV coswrdr - - K x·x smwrdr. 
3 v 3 v 7r 'Zgr 3 v 

-00 -00 

(3.66) 

It results from (3.66) 

00 

S (2) ( ) - 1 J' K . XiXv W - - 271" XiXv slnwrdr. (3.67) 

-00 

The right-hand side of the relation (3.67) is an odd function of w. Therefore 
s~~L (w) is an odd function 

(3.68) 

that is, imaginary parts of cross-spectral densities are odd functions of w. 
For a system of n random stationary and stationary-connected functions 

Xj (t) we may obtain a matrix (similar to that of cross-correlation functions) 

(3.69) 
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The diagonal terms of the matrix S (w) are real non-negative even functions 
of w: 

Sx;x; (w) = Sx;x; (-w). 

Example 3.10. Given a stationary random function X(t) with proba­
bility characteristics mx = 0, Kx (T) = Dxe-al'Tl. The task is to find the 
cross-spectral density of the stationary function and of its first derivative. 
The expression for cross-correlation function (3.29) is 

K d K () D -al'Tl· d xx = - x T = - xae SIn T T. 
dT 

Let us use relationship (3.59) to determine the cross-spectral density 

00 

Sxx (iw) = _ Dxa ! e-al'Tl-iw'TsignTdT 
27r 

-00 

[JOO

e-(a+iW)'T(1)dT+ j ea'T-iW'T(_1)dT] 

o -00 

[[ e-(0+,",)7 dr -[ e -(0-iw)7 dr] 

3.6 Determination of the Spectral Densities of the 
Linear Differential Equations with Constant Coefficients 
Solutions 

Solving linear differential equations at steady-state excitations may involve 
the following cases. 

1. An equation (or a set of equations) has coefficients variable in time, 
as for example, the equation (2.61). In this case a solution of an equation 
with a stationary right-hand side will be non-stationary at any duration of 
the process. The launch of a flying vehicle may be an example of the non­
stationary motion of a system, described by the differential equations with 
variable coefficients (See Fig. 0.2). 

2. An equation has constant coefficients, for example, equation (2.55). 
In this case, two conditions of the systems motion at stationary excitations 
are possible: 1) non-stationary motion and 2) stationary motion. The non­
stationary motion (for example, oscillations) of a system under the action of 
stationary random excitations occurs, when the system is at rest before the 
action of these random excitations. 
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Stationary oscillations occur at stationary excitations after a certain pe­
riod of time has passed since the beginning of oscillations. 

Stationary random oscillations are possible in stable systems. Let us con­
sider the algorithm of determining the solution spectral density assuming, 
that at stationary excitation the system is under the conditions of stationary 
motion. We shall consider only equations of the first and second order (the 
case of determining the spectral density of the solutions of n-th order system 
of equations is discussed in a broader context in chapter 6). 

Let us recall the essentials of operational calculus pertaining to the 
Laplace transform. Given a certain function f (t) of the independent real 
variable t, the Laplace transform (a for direct transformation and b for in­
verse transformation) are defined by the formulas 

00 

a) fo (p) = ! f (t) e-Ptdt, 

0 (3.70) 
00 

b) f (t) = ! fo (p) ePtdp. 

0 

where p is a certain complex quantity. The function f (t) is referred to as the 
original, while the function fo (p) is defined as a transform. The originals and 
transforms of the function f (t) and its derivatives as well as of the function 
with delay f (t - to) are given in Table 3.1 at zero initial values. The Fourier 
transforms of the same functions are presented in the third row of Table 3.1. 

Table 3.I. 

Original 
df d2f dnf 

dt dt2 dtn 

Transform pfo(p) p2 fo(p) pn fo(p) 

Frequency domain iWfo(iw) (iw)2 fo(iw) (iw)n fo(iw) 

Table 3.1 (continuation) 

Original f(t - to) f f(t)dt h+h 

e-pto fo(p) 
1 

h(p) + h(p) Transform - fo(p) 
p 

Frequency domain e-iwto fo(iw) 
1 . 

fOl(iw) + f02(iw) -:- fo(zw) 
zw 
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The direct and inverse one-sided Fourier transformations are 
00 

10 (iw) = ~ ! 1 (t) e-iwtdt, 

o 
00 

1 (t) = ! 10 (iw) eiwtdw. 

o 

or bilaterial transformations 

00 

10 (iw) = ~ ! 1 (t) e-iwtdt, 
-00 

00 

1 (t) = ! 10 (iw) eiwtdw. 
-00 

Let us consider the equation of the first order 

L (t) = Y (t) + kY (t) - 1 (t) = 0 

(3.71) 

(3.72) 

(3.73) 

where 1 (t) is a stationary function with a zero mathematical expectation and 
a known spectral density. If the function 1 (t) has a non-zero mathematical 
expectation it may be presented in the form 

o 

1 (t) = mf + 1 (t) , 
o 

where 1 (t) is a centered random function. Since mf is a constant quantity 
at stationary oscillations, the mathematical expectation my will be constant 
and equal to 

1 
my = kmf. 

Therefore by manipulations we get the equation (3.73), where 1 (t) and Y (t) 
are centered stationary functions. Using the Laplace transform (at zero initial 
values) we get 

00 

L (P) = ! [Y (t) + kY (t) - 1 (t)] e-iptdt = pY (P) + kY (P) - 10 (p) = o. 
o 

The transform of the function Y (t) is 

Y (p) = (p!k) 10 (p) = W (p) 10 (p), (3.74) 

where W (p) is a transfer function. 
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In frequency domain we get 

1 
Y (iw) = (iw + k/O (iw) = W(iw) fo (iw). (3.75) 

Using the inverse bilateral Fourier transform, we get 

00 

Y (t) = J Yo (iw) eiwtdw. (3.76) 

-00 

Therefore, it is possible to represent the correlation function Ky (t, t') as 

Ky (t, t') = M [Y (t) Y* (t')] 

~ M [ CI Yo (Uu) e'w,w) Cl Y; (M) e-'"'<' W') 1 
or 

00 00 

K y = J J M[Y(iw)Y*(iw')]ei(wt-w't')dwdw'. (3.77) 

-00 -00 

For the function Ky to depend on a difference of time instants (t - t' = T), 
which is a must at a stationary process, we cannot do without the fulfillment 
of the condition 

M [Y (iw) Y* (iw')] = Sy (w') 8 (w' - w). 

Substituting this relationship in the left-hand side of (3.77) and integrating 
over w', we get 

00 

Ky(T) = J Sy(w)eiW'Tdw. (3.78) 

-00 

We may obtain the correlation function Ky (t, t') using equation (3.75) 

Ky (t, t') = M [Y (t) Y* (t')] 

~ M [l (W (iw) fo (Uu) e'"'dw) ·l (W· ('w')!; (Uu') e-;w'<' dw') 1 
or 

00 00 

Ky(t, t') = J J W(iw)W*(iw')M[Jo(iw)f~(iw')]ei(wt-w't')dwdw'. 
-00 -00 
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(3.79) 

The function Ky (t, t') will depend on a difference of time instants given 

M [fo (iw) f; (iw')] = Sf (w') 8 (w' - w). (3.80) 

Excluding the mathematical expectation of the product of functions fo and 
fo (3.80) from the right-hand side of (3.79), we get 

00 

Ky (r) = ! W (iw) W* (iw) Sf (w) eiw'T dw. (3.81) 

-00 

Since (3.78) and (3.81) are two representations of the same function Ky (r), 
we should satisfy the identity 

00 ! [Sy (w) - W (iw) W* (iw) Sf (w)] eiw'T dw == O. (3.82) 

-00 

Therefore, we get from (3.82) 

Sy (w) = W (iw) W* (iw) Sf (w) = IW (iw)12 Sf (w), (3.83) 

where IW1 (iw)12 is the square of the frequency function modulus. The rela­
tionship (3.83) relates the "input" spectral density Sy (w) to the "output" 
spectral density Sy (w). 

For the second-order equation 

Y +alY +a2Y = kf 

We get in frequency domain 

Yo (iw) = [ ] fo (iw) = W (iw) fo (iw) , 
(iw)2 + (iw) al + a2 

k 
(3.84) 

where 

k 
W (iw) = .".-------,,-

[(iw)2 + (iw)al + a2]' 

The relation (3.84) is similar to that of (3.75), therefore the spectral density 
Sy (w) is equal to 

Sy (w) = IW (iw)12 Sf (w). (3.85) 

This result is true for any linear equation with constant coefficients (here an 
equation of n-th order is meant), for which the frequency function W (iw) 
is equal to 
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k 
W (iw) = ~---------------o;-

[(iwt ao + (iwt- I al + (iwt-2 a2 + ... + an]' 

Knowing the "output" spectral density, we may determine the variance 
Dy 

00 

Ky (0) = Dy = J Sy (w) dw. 
-00 

In the general case, we may present the spectral density Sy (w) as 

. 2 1 G (iw) 
Sy (w) = IW (zw)1 Sf (w) = -2' . 2' 

7r IA (zw)1 

where 

G (iw) = bo (iw)2n-2 + bl (iw)2n-4 + ... + bn- 1 ; 

A (iw) = ao (iwt + al (iwt- I + ... + an, 

therefore 

The values of integrals In are presented in Appendix 2. 

(3.86) 

(3.87) 
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4. Fundamentals of the Markov Processes 
Theory 

4.1 Continuous One-Dimensional Markov Processes 

The previous sections dealt with the correlation theory of random functions 
and only the first two moments of a random function - expectation and the 
correlation function has been considered. Unfortunately, far from all encoun­
tered applied problems can be solved by correlation theory methods. A case 
in point is the problem of determining the probability that the ordinate of 
a random function will exceed a particular given value, which often arises 
during the dynamic systems analysis. These problems become solvable if we 
restrict their treatment to processes not only possessing some special proper­
ties, but also interesting in the practical plane. Up to this point we have used 
correlation theory methods to analyze systems with a linear input-output re­
lation. In this case the correlation theory enables us to obtain the probability 
characteristics of the differential equations solution, knowing the probability 
characteristics of perturbations. It is impossible to find a solution of nonlinear 
equations by correlation theory methods. However, if we confine ourselves to 
the processes possessing some special properties, we can obtain a solution of 
nonlinear problems of statistical dynamics. Markov processes, for the exhaus­
tive characterization of which it is sufficient to know only two-dimensional 
distribution laws, are classified among such processes. 

The theory of Markov processes assumes that the distribution law of the 
ordinate of a process at any future time instant ti depends only on the value 
of the ordinate at a given instant t i - l and is independent of the function's 
past ordinates. In other words, additional knowledge of the random function's 
values at t < ti-l does not alter the distribution character of its ordinates 
at t ;?: t i . Physically, this singularity of a random process is equivalent to the 
processes without aftereffect (processes independent on previous history). 

For a Markov process any multi-dimensional distribution laws can be 
expressed in terms of two-dimensional laws. As an example let us consider a 
three-dimensional probability density f (X2' t2, Xl, ti. XO, to), a probability 
density of the three ordinates of a random process taken at three sequential 
instants to, tl, t2 (t2 > tl > to). In accordance with the general formula for 
the conditional distribution laws (1.48) 

f (X2' t2, XI, t l , XO, to) = f (X2' t21 Xl, tl, XO, to) f (Xl, ti. Xo, to). (4.1) 
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In its turn, 

(4.2) 

However, since 

(this is the property only of Markov processes), we finally obtain 

In the same way we may obtain an expression for the n-dimensional 
probability density 

! (Xn' tn, ... , Xo, to) = 

=! (Xn' tnl Xn-l, tn-I)! (Xn-I. tn-II Xn-2, tn-2) ... ! (XO, to), (4.4) 

i.e. the probability density of the Markov process of any order ordinates 
can be expressed in terms of the conditional two-dimensional probability 
densities of the process ordinate at a time instant tl. The relations (true for 
any probability density) 

(4.5) 
00 ! ! (Xi, til Xi-I, ti-l) dXi = 1. (4.6) 

-00 

should be valid for functions! (Xi, tl Xi-I. ti- l ). 
Besides, the two-dimensional probability density! (Xi, t i , Xi-I, ti-l) is 

related to the conditional probability density by the relation 

!(XI, tl, Xi-I, ti-l) = !(Xi, tilxi-b ti-I)!(Xi-b ti-d. (4.7) 

It follows from (4.7) that 

00 

! (Xi, ti ) = ! ! (Xi, t i , Xi-I, ti-d dXi-1 
-00 

00 

= ! ! (X, tl Xi-b ti-l)! (Xi-I. ti-l) dXi-l. (4.8) 

-00 

Let us consider three sequential instants: to, rand t (to < r < t). At 
the instant to (Fig.4.1) the process had an ordinate Xo. Then the elemen­
tary probabilities of transition from the state Xo to a state in the inter­
val (z, z + dz) (where z = X (r» at the instant r and to a state in the 
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x 

x 

t t 

Fig. 4.1. 

interval (x, x + dx) at the instant t are equal to f (z, TI xo, to) dz and 
f (x, tl xo, to) dx respectively. 

The probability of transition from the state (z, T) to the interval (x, x + 
+dx) at the instant t is equal to f (x, tl z, T) dx. The total probability of 
transition from the state (x, x + dx) at the instant t is obtained by inte­
gration of the probabilities product (x, f (x, tl z, T) dx· f (z, TI xo, TO) dz) 
with respect to all intermediate values z, i.e. 

f (x, tl xo, to) dx ~ CI f (x, tl z, 7) f (z, 71 Xo, to) dZ) dx 

or 

00 

f (x, tl xo, to) = J f (x, tl z, T) f (z, TI xo, to) dz. (4.9) 
-00 

In mathematical literature the equation (4.9) is referred to as the Chapman­
Kolmogorov equation, in the literature on physics it is called the Smolukhowski 
equation, who obtained it when studying the Brownian motion of a particle. 
The equation (4.9) sets a rather strict limits on the form of a transition prob­
ability conditional density, namely, the integration over z should lead to the 
elimination of z with the form of the function f remaining unchanged. 

The limits of integration should not necessarily be equal to infinity. 

4.2 The Fokker-Planck-Kolmogorov Equation 

Let us obtain equations satisfied by a conditional probability density 
f (x, tl Xo, to) (Kolmogorov equations) for a continuous random process. The 
process X (t) is considered continuous, if within small time intervals X (t) can 
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obtain increments of noticeable magnitude with only small probability. Let 
us assume for this purpose that in the equation (4.9) T = to+.::1t (.::1t > 0), i.e. 

00 

1 (x, tl xo, to) = J 1 (x, tl z, to + .::1t) 1 (z, to + .::1tl Xo, to) dz. (4.10) 
-00 

Let us then expand the function 1 (x, tl z, to + .::1t) in a Taylor series in z 
in the neighbourhood of a point z = Xo (confining ourselves to the first three 
expansion terms): 

1 (x, tl z, to + .::1t) = 1 (x, tl xo, to + .::1t) + 881 (z - xo) 
Xo 

1821 2 1831 3 
+ -28 2 (z-xo) +-8 3 (z-xo) +... (4.11) 

Xo 6 Xo 

Substituting (4.11) in the equation (4.10), we obtain 

00 

1 (x, tl Xo, to) = J [I (x, tl Xo, to + .::1t) + ::0 (z - xo) 
-00 

1 821 2 1 831 3] +--(z-xo) +--(z-xo) 
28x6 6 8x~ 

x 1 (zo, to + .::1tl Xo, to) dz. (4.12) 

Since 
00 

J 1 (z, to + .::1tl xo, to) dz = 1, (4.13) 
-00 

then by manipulations we obtain 

1 (x, tl Xo, to) - 1 (x, tl Xo, to + .::1t) 
00 

81 J = 8xo (z - xo) 1 (z, to + .::1tl Xo, to) dz 
-00 

00 

1821 J + - 8 2 (z - xO)2 1 (z, to + .::1tl xo, to) dz 
2 Xo 

-00 

00 

1831 J + - 8 3 (z - XO)3 1 (z, to + .::1tl xo, to) dz. 
6 Xo 

(4.14) 

-00 

Dividing both sides of the equation (4.14) by .::1t and proceeding to the limit, 
we obtain 
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where 

00 

al = al (xo, to) = lim ; / (z - xo) f (z, to + L1 tl xo, to) dZj L1t-+O ut 
-00 

00 

bl = bl (xo, to) = lim / (z - xO)2 f (z, to + L1 tl xo, to) dZj 
L1t-+O 

-00 

00 

Cl = Cl (xo, to) = lim ; / (z - xO)3 f (z, to + Ll tl Xo, to) dz. L1t-+o ut 
-00 

(4.16) 

Two of the introduced coefficients have special names: the drift coefficient 
for al and the diffusion coefficient for bl . 

We may record these expressions for coefficients at, bl and Cl in a more 
compact fashion: 

al = lim M [z - xoJ = lim M [L1zJ. 
L1t-+O L1t L1t-+O L1t ' 

M [(z - XO)2] M [L1z2] 
bl = lim L1 = lim . 

L1t-+O t L1t-+O L1t ' 
(4.17) 

. M [(z - XO)3] . M [L1z3] 
Cl = lim = hm . 

L1t-+O L1t L1t-+O L1t 

The M [ J operation in the expressions (4.17) is an operation of conditional 
mathematical expectation. The coefficient al (xo, to) constitutes the limit of 
the ratio of the random process difference mathematical expectation to a 
time interval L1t, for which the ordinates have been taken when the interval 
tended to zero, i.e. al (xo, to) characterizes the velocity of random function 
variation. The coefficient bl (xo, to) determines the limit of the ratio of the 
ordinates difference square mathematical expectation to a time interval L1t as 
L1t tends to zero. In other words, it specifies the random function conditional 
variance variation velocity. 

The theory of Markov processes usually assumes that the moment of the 

third order M [(z - XO)3] tends to zero faster than L1t, therefore 

(4.18) 

The adopted condition Cl (xo, to) = 0 is not obvious and should be con­
sidered as the assumption that the probability of large deviations Z - Xo 
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must decrease with the reduction of Llt rapid enough for all moments of this 
difference, beginning from the third one, tend to zero faster than Llt. This re­
quirement allows us to regard a random function X (t) in a system subjected 
to the action of random impulses as a continuously varying quantity. Hence, 
the solution of the equation (4.15) is true (at Cl = 0) only for time intervals 
Llt, that far exceed time intervals between impulses. 

Finally we obtain the following equation (Kolmogorov's first equation): 

81 81 821 
- ~ = al -8 + b1 8 2· VLo Xo Xo 

(4.19) 

The equation (4.19) enables us to determine the conditional probability 
density 1 (x, tl Xo, to) as a function of the initial state, since the "past" time 
to and the "past" state Xo are independent variables. 

Let us obtain an equation which allows us to determine the variation of 
the conditional probability density in the future, i.e. an equation relating the 
derivatives 1 (x, tl Xo, to) with respect to t and x, rather than with respect to 
to and Xo, as is the case in Kolmogorov's first equation. An equation, in which 
t and x are independent variables, is called Kolmogorov's second equation. 

Let us take advantage of the conclusion given in work [17] and use in our 
consideration some arbitrary function R (x) that in the whole variation range 
of the random function X (t) is continuously differentiable up to the second 
order and becomes zero on the boundaries of the x variation interval ( a, b) 
together with the first two derivatives 

R (a) = R (b) = R' (a) = R' (b) = R" (a) = R" (b) = o. (4.20) 

It is generally considered (by analogy with a normal distribution law) that 
the area of possible x values is equal to (-00,00), i.e. a = -00, b = 00. Let 
us consider the definition of a partial derivative 

81 (x, tl Xo, to) = lim 1 (x, t + Ll tl Xo, to) - 1 (x, tl Xo, to). 
at &~O ~ 

(4.21) 

As distinct from the derivation of Kolmogorov's first equation where the 
instant 7 is taken as the one closely spaced with respect to the instant to, 
when deriving Kolmogorov's second equation, the instant 7 is taken close to 
the instant t. 

Let us multiply the relation (4.21) by R(x) and integrate it between-oo 
and 00, then 

-00 

00 

= lim ! l(x,t+Lltlxo'~l-l(x,tlxo,to)R(x)dx. 
L1t~O 

(4.22) 

-00 
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Let us use the equation (4.9), in which we shall replace t by t + Llt and T 

by t. As a result we obtain 

00 

I (x, t + Ll tl Xo, to) = J I (x, t + Ll tl z, t) I (z, tl Xo, to) dz. (4.23) 
-00 

Let us eliminate I (x, tl Xo, to) that enters the expression (4.22), using the 
equation (4.23): 

00 J al(x, ~~xo,to) R(x)dx 

-00 

= lim ; J(X) [JOO 

I(x, t+Lltlz, t)/(z, tlxo,to)R(x)dz 
Llt-l-O £....It 

-00 -00 

-/(x, tlxo,t,,)R(X)] dx 

= lim ; [Joo 
I(z, tlxo, to) Joo l(x,t+Lltlz,t)R(x)dxdz 

Llt-l-O £....It 
-00 -00 

-1 I (x, flxo, to) R (x) dX]. (4.24) 

Replacing the variable of integration x by the variable of integration z in 
the expression (the addend in the formula (4.24)) 

(X) (X) 

J I (z, tl xoto) J I (x, t + Ll tl z, t) R(x) dxdz 
-(X) -00 

we obtain 

00 J al (x, ~xo, to) R(x)dx 

-00 

~ J!!'lo ~t 1 I(x), 'I xo, to) [1 I (z, t+ Lltl x, t) R (z) dz - R(X)] dx. 
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Let us expand the function R (z) in a Taylor series in powers of (x - z) 
near the point z = x: 

R (z) = R (x) + R' (x) (x - z) + ~RII (x) (x - Z)2 + 0 (x - z), 

where 0 (x - z) are terms of a higher order of smallness. 
Let us consider an expression 

00 

/ 1 (z, t + ..1tl x, t) [R (x) + R' (x - z) 
-00 

12] + 2R" (x - z) + 0 (x - z) dz 

00 

= / I(z, t+..1tlx, t)R(x)dz 
-00 

00 

+ R' (x) / (x - z) 1 (z, t + ..1tl xo, to) dz 
-00 

00 1/ 2 + 2R" (x) (x - z) 1 (z, t + ..1tl x, t) dz. (4.25) 
-00 

Since 

00 

/ 1 (z, t + ..1 t I x, t) dz = 1, 
-00 

then, omitting the series terms 0 (x - z), we obtain 

00 

/ 8f(x, ~xo,to) R (x) dx 

-00 

00 

= / [I (x, t I xo, to) R' (x) adx, t) + ~ R" (x) bdx, t)] dx, (4.26) 
-00 

where 
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00 . I! al = al (x, t) = hm A (x - z) f (z, t + L1 tl x, t) dz 
Ll.t--+O £.Jt 

-00 

= lim M [x - zl. 
Ll.t--+O L1t ' 

00 

bl = bl (x, t) = lim : ! (x - z)2 f (z, t + L1tl xo, to) dz 
Ll.t--+O £.Jt 

-00 

It is assumed in expression (4.25) that 

00 . I! hm A O(x-z)f(z,t+L1tlx,t)dz=O. 
Ll.t--+O £.Jt 

-00 

(4.27) 

The expressions (4.27) for the coefficients al and bl are similar to those 
of (4.16) and (4.17), but now they depend on x and t. 

Integrating the expressions entered in the right-hand side of (4.26) 

00 00 ! fR'aldx, ! fR"bldx 
-00 -00 

by parts, we obtain (at R(-oo) = R(oo) = 0) 

00 00 ! fa1R'dx=- ! :x(fadRdx+(falR)I_: 
-00 -00 

00 

= _ ! a (fal) Rdx. 
ax ' 

(4.28) 
-00 

-00 -00 

Let us substitute (4.28) in (4.26), then 

00 

! [af + a (fad _ ~ a2 (fbd ] R(x)dx = o. 
at ax 2 ax2 (4.29) 

-00 
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Since the function R (x) is arbitrary, the identical vanishing of the left­
hand side of the relationship (4.29) is possible only when 

81 + 8 (fal) _ ~ 82 (fbI) = o. 
8t 8x 2 8x2 

(4.30) 

The obtained equation (4.30) is Kolmogorov's second equation for one­
dimensional processes that allows us to determine the variation of the condi­
tional probability density in the future with a known probability density at 
an initial instant. 

Kolmogorov's second equation enjoys the broadest use in problems of 
statistical dynamics and the theory of random vibrations. According to the 
current classification of partial differential equations, Kolmogorov's equations 
(4.19) and (4.30) are of the parabolic type. For the solution of an equation to 
be unambiguous, we must to know the initial and boundary conditions for the 
desired function (for the probability density f(x, tlxo,to». The function f 
must satisfy not only the initial and boundary conditions, but also conditions 
true for any probability density 

00 

f ~ 0, J 1 (x, t I xo, to) dx = 1. 

-00 

Two versions of the initial conditions are possible at t = to : 1) The 
values of the random function x = Xo ordinate are random quantities with 
a known probability density f (xo, to); 2) The values of the random function 
Xo ordinate are given (a nonrandom quantity). 

In the first version the condition 

f (x, tl xo, to) It=to = f (xo, to) . 

must be fulfilled. 
In the second version, where Xo is given, 

f (x, t I Xo, to)lt=to = 15 (x - xo). 

(4.31) 

( 4.32) 

This condition can be obtained as follows. At a given Xo the probability 
that possible values x are more or less than Xo, is equal to zero. Therefore, 
we may present the probability density at t = to, which should meet the 
condition 

00 

J f (x, to) dx = 1 

-00 

as 

Xo-c Xo+c 00 J f (x, to) dx + J 1 (x, to) dx + J f (x, to) dx = 1, (4.33) 

-00 
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where c is a small positive quantity. 
The first and the third integrals in the left-hand side of the expression 

(4.33) are zero, since they are equal to the probabilities of the occurrence of 
x values smaller and larger than xo, therefore 

xo+£ J f (x, to) dx = l. (4.34) 

xo-e 

The relation (4.34) at c -+ 0 is a condition defining the delta function, i.e. 

f (x, to) = 8 (x - xo) . (4.35) 

If a random function x (t) can take any values in the interval (-00, 00), 
then the conditions at ±oo must be taken as boundary conditions. 

When determining the distributions that are homogeneous in time, the 
function f and the coefficients a and b do not depend on t, therefore the 
equation (4.30) takes the form 

1 d2 d 
2" dx2 [b1 (x) fl - dx [al (x) fl = O. (4.36) 

Or, integrating over x 

d 
dx [b1 (x) fl - 2al (x) f = c. (4.37) 

df 
If we suppose that at x -+ 00 f and dx tend to zero, then c = 0, therefore 

the solution of equation (4.36) takes the form 

The integration constant Cl will be determined from the condition 

00 ! f (x) dx = l. 
-00 

Let us cite some examples of the equation (4.30) solution. 
Example 4.1. Let us consider a particular case at al (x, t) 

b1 (x, t) = blO = const : 

(4.38) 

o and 

(4.39) 

It is required to find the solution of equation (4.39) for the x variation 
interval x( -00,00) meeting the conditions 
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1) t = 0, f (x, t I xo, 0) = 8 (x - xo) , 
00 

2) ! f (x, t I xo, 0) dx = 1, (4.40) 
-00 

3) f ? O. 

The solution of the equation (4.39) that meets the conditions (4.40) has 
the form 

1 {(X - XO)2} f(x, tlxo,O) = ~exp - 2b . 
21rblOt lOt 

(4.41) 

We may transform the right-hand side of (4.41) to the form 

f = ~mexp {_m2 (x - XO)2} , (m __ 1_) 
V" - ..j2blOt . 

At t -t 0, m -t 00, therefore the right-hand side of (4.41) at t -t 0 is the 
delta function (Appendix 1). 

The expression (4.41) obtained for a conditional probability density is a 
Gaussian normal distribution law that varies in time and has a mathematical 
expectation mo: = Xo and a variance Do: = blOt. 

Let us consider a random process, when it is homogeneous in coordinate 
x, i.e. the probability of passage from the state Xo to the state x depends 
only on a difference x - Xo. 

In this case, the coefficients al and bl do not depend on x. 
Therefore, from the equation (4.30) we obtain 

Let us introduce a new variable 

t 

Xl = X - ! A (tI) dtl ; 

o 

t 

t2 = ! B (tl) dtl· 
o 

Then, the equation (4.42) will change into the form 

8f 182 f 
8t2 = 2 8xr 

(4.42) 

(4.43) 

The equation (4.43) solution is similar to that of (4.41) (at the same initial 
conditions): 

1 { [x - Xo - bl (t)]2 } 
f (x, tl Xo, 0) = y'21ral (t) exp - 2a~ (t) , 
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where 

t 

al (t) = ! B (td dt1 ; 

o 

t 

b1 (t) = ! A (t1) dtl. 
o 

The obtained equations (4.19) and (4.30) enable us to investigate the 
variation in time of the distribution conditional density. For a full solution of 
these equations, however, we must generally have an explicit dependence of 
the coefficients al and b1 upon the variables xo, to for the first equation, and 
upon x, t for the second equation. As the conditional probability densities, 
defined by the equations (4.19), (4.30), describe (in a probabilistic sense) the 
state of any object, for example, that of a mechanical system, there should be 
a relation between Kolmogorov's equations and the equations of this systems 
motion. In order to establish this relationship, let us consider the equation 
of motion of the first order system 

x = p (x) + e(t), (4.44) 

where e (t) is a random disturbance (the white noise) with known probability 
characteristics me = 0, ke = 80 8 (T). The white noise variance and power 
are equal to infinity which contradicts the mechanical and physical notions 
of real processes, i.e. the delta-correlated random function is a rather crude 
approximation. Nevertheless, the white noise and its properties are widely 
used in the theory of random processes, and, in particular, in the theory of 
Markov processes. The use of the white noise in theoretical investigations 
has allowed us to obtain classical results in the nonlinear systems statistical 
dynamics. 

Let us integrate the equation (4.44) between t and t + .1t, then 

x (t + .1t) - x (t) = Llx = x - z = tjLltp (x) dt1 + tTte dt!, 

t 

or, using the mean-value theorem, we obtain 

t+Llt 

.1x = x - z = P (x) .1t + ! edtl. 
t 

(4.45) 

The conditional mathematical expectation of both sides of equality (4.45) 
is 

00 

M[x-z] = ! (x-z)f(z,t+.1tix,t)dx, 

-00 

or 
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[ 
HLlt 1 

M[x-z] = M[F(x)Llt]+M [C(h)dt1 . 

As F (x) is taken at the given x, 

t+Llt 

M[x-z]=F(x)Llt+ ! me(tl)dtl=F(x)Llt. 

t 

(4.46) 

(4.47) 

Dividing both parts of the relation (4.47) by Llt and proceeding to the 
limit in (4.27), we obtain the coefficient al 

. 1 M[x-z] 
al = hm A Ll =F(x). 

Llt-+O L.lt t 
( 4.48) 

Let us determine the coefficient b1 (x, t), considering the conditional math­
ematical expectation of the square of a difference (x - z) : 

since 

we obtain 

t+Llt t+Llt 

bl = lim ~O! ! 6 (t2 - td dtl dt2 = So. 
Llt-+O L.lt 

(4.49) 

t t 

Example 4.2. A liquid damper is shown in Fig. 4.2. A random force £ (t) 
is acting on the piston rod. Considering the rod and the piston inertialess, we 
obtain the equation of the pistons motion ax = c (t), where a is a coefficient 
of viscous friction; c (t) is a random stationary excitation (force) with known 
probability characteristics me = 0, K", = S06", (T). 

It is required to determine the conditional probability density f (x, t I Xo, 0) 
of the rod displacement x at an arbitrary instant t that at t = 0 must meet 
the condition 
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s(t) 

x 

Fig. 4.2. 

f (x, 01 xo, 0) = 8 (x - xo) , (4.50) 

and at an arbitrary t must satisfy the normalization condition 

00 ! f (x, tl xo, 0) = l. (4.51) 
-00 

For this problem the condition (4.51) is approximate, since the displace­
ments of the piston are limited (-l :5 x :5 l) and the coefficients al and b1 

are equal to 

(4.52) 

Therefore, the equation for determining the conditional probability den­
sity is of the form 

(4.53) 

The equation (4.53) coincides with the equation (4.39). 
Taking advantage of the expression (4.41), we obtain the following solution 

of the equation (4.53): 

0: /1 {0:2 (x - xO)2 } 
f (x, tl xo,O) = $oV 2rrt exp - 2Sot . (4.54) 

Let us consider the steady-state (stationary) condition, when the condi­
tional probability density f (x, t 1 Xo, to) and the coefficients of the equation 
(4.30) do not depend on time. This is tantamount to the assumption that 
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at large time intervals, elapsed since the beginning of the process, the con­
ditional probability density can be considered independent of the difference 
t - to. 

In this case, we obtain from equation (4.30) 

~ d2 (bd) _ ~ (ad) = O. 
2 dx2 dx 

Let us integrate equation (4.55) over x 

d 
dx (bd) - 2ad = c. 

It has already been shown (equation (4.37» that c = O. 
It follows from (4.56) at c = 0: 

df = (2a l ) dx _ db l . 

f bl bl 

Integrating (4.57), we obtain 

CI { J al (x) } f (x) = bl (x) exp 2 bl (x) dx . 

We may determine this arbitrary constant CI from the condition 

00 J f(x)dx=l. 
-00 

(4.55) 

(4.56) 

(4.57) 

( 4.58) 

Example 4.3. Figure 4.3 shows a body of a mass m moving horizontally 
under the action of a force Ro + L1R, where Ro is the thrust force nominal 
value, and L1R is a random component. The equation of the body motion has 
the form 

mv + F (v) = Ro + L1R, (4.59) 

where v is a velocity of motion; F (v) is a resistance force. Due to a scatter 
of thrust LlR the body motion velocity v is equal to v = Vo + VI, where Vo 

m 

R + ~~ 1----------------------7 
.. 
X 

Fig. 4.3. 
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is the velocity of the body at LJR = 0, VI is a scatter of a velocity resulting 
from the scatter of thrust. 

Let us assume, that the random function LJR presents the process of the 
white noise type with a zero mathematical expectation and the correlation 
function KLlR = 15 (t - td. It is required to determine the steady-state prob­
ability distribution f (VI) and the variance of a velocity VI. 

Let us expand F (v) in a series near V = vo, considering that the resistance 
force LJF is the odd function of VI: 

8FI 183FI 3 
F(v) = F(vo) + 8v V=Vo VI + "6 8v3 v=vo VI + ... (4.60) 

As a result, we obtain the following equation 

(4.61) 

where 

In order to determine the coefficients al and b1 let us integrate the equa­
tion of motion (4.61) between t, t + LJt 

or 

t+Llt 

LJVl = -F1LJt + f c: (t) dt. 
t 

According to (4.48) and (4.49), the coefficients al and b1 are: 

al = lim : M [LJVIJ = -FI (VI); 
Llt~O ,ut 

bI = lim : M [LJVI (t) LJVI (tdJ = S02' 
Llt~O,ut m 

Kolmogorov's second equation for the above problem is of the form 

( 2 = So) a 2' m 

(4.62) 

We may consider that the probability of large values VI occurrence is 
small, therefore the probability density should meet the condition 
f (VI) IVl ~oo = O. If, in addition to this, we assume, that the derivative f (vd 
at !vII -t 00 is also zero, then it follows from the equation (4.62), that c = O. 
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The obtained solution substantiates the adopted assumptions about the be­
havior of the probability density and its derivative at large values of VI. If 
this solution meets the adopted assumptions, they may be consider true. 

At c = 0, the solution of the equation (4.62) has the following form 

f ~ c, exp { - :,1 F, (v.) dv, } . (4.63) 

Let us determine the arbitrary constant CI from the normalization condi­
tion 

00 

/ fdvI = l. 
-00 

For example, in the case on hand at 

we have 

(4.64) 

df 
It follows from (4.64) that f and -d at IVII -+ 00 become zero. As the 

VI 
mathematical expectation M [VI] is zero, the variance will be 

(4.65) 

At a linear dependence of a resistance force on vI, i.e. at FI = Il!I VI, the 
probability density distribution follows the normal law. 

Let us determine an approximate value of the integration constant CI, 

assuming that 

(4.66) 

then 

(4.67) 
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By integration we obtain 

whence 

(4.68) 

The approximate value of the variance is 

(4.69) 
-00 

integrating, we obtain 

(4.70) 

By substituting the expression (4.68) in (4.70), we obtain 

(4.71) 

4.3 Multidimensional Markov Processes 

The basic concepts of a one-dimensional Markov process may be general­
ized for a case of multidimensional processes. A multidimensional process is 
considered a Markov process, if the distribution law of a system of random 
quantities Xl, X 2 , ... , Xn taken at an instant t and calculated given that 
the values XlO, X20, ... , XnO of the random quantities Xl, X 2 , ... , Xn at an 
instant to are known and do not depend on random functions Xi (t) values 
at the preceding instants. Here, as in the case of one-dimensional Markov 
process, a two-dimensional conditional probability density 

is an exhaustive characteristic of the process, where X, Xo are vectors with 
the components Xi and XiO' 



www.manaraa.com

120 4. Fundamentals of the Markov Processes Theory 

For multidimensional processes the Smolukhowski equation has the form 

(Xl (Xl 

= / ... / !(x1, .. ·,xn ,tlz1, ... ,zn,r) 
-00 -(Xl 

Ignoring computations, we present Kolmogorov's second equation for mul­
tidimensional random processes [17, 40J 

of n a 1 n n 02 
- + ~- [adJ - - ~~-- [bijfJ =0. 
at ~ ax· 2 ~~ oX'OX' 

i=1' i=1 j=1 • J 

(4.72) 

In the specific case of two-dimensional random process, we have 

of o(ad) 0(a2J) 102(bu J) 102(b2d) - + + - - - - -::--=,c-:-:-
at OX1 OX2 2 aX! 2 ox~ 

_ ~ 02 (b12!) _ ~ 02 (b2d) = O. 
2 OXIOX2 2 OXIOX2 

(4.73) 

The coefficients are 

(4.74) 

Any solution of Kolmogorov's equations involves great difficulties (with 
the exception of elementary particular cases). These partial differential equa­
tions are classified among parabolic equations. Therefore, in order to obtain 
unambiguos solutions we must know the initial and boundary conditions, 
which the function f (the probability density distribution law) should meet. 

Example 4.4. Let us consider a mechanical system, in cases where the 
force of inertia cannot be ignored (Fig. 4.4). The motion of a mass m is 
described by the following second-order equation: 

x + 2nx + p~x = c (t). (4.75) 

For the complete description of this motion we must know not only the 
x value at t = to, but also the value of the first derivative X, and, hence, the 
x value at t < to (a process with aftereffect). Therefore, it is impossible to 
use a one-dimensional Markov process for the investigation of such system. 
However, if we present the equation (4.75) in the form of two equations of 
the first order (taking x = Xl,X = X2) 
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Fig. 4.4. 

. 2 
Xl = -2nxl - POX2 + C (t) ; 

3;2 = Xl 
(4.76) 

and consider Xl and X2 as the coordinates of a point on a phase plane, 
methods of Markov processes can be used for obtaining a solution to the 
system of equations (4.76). We may reduce a process with an aftereffect to 
a process without an aftereffect by increasing the dimensionality of a phase 
space. If we specify the state of a system that is described, for example, 
by a differential equation of the second order, by two coordinates Xl and 
X2 in two-dimensional phase space, we get a process without an aftereffect. 
In order to determine the joint probability density f (Xl, X2, t) = f (3;, x, t) 
for the equation (4.75) we must solve the equation (4.73) with due regard 
for appropriate initial and boundary conditions. In the general case we may 
always present the following set of mechanical system motion equations 

as a system of G I equations of the first order 

Xl = FI (Xl, X2, t) +el; 

X2 = Xl> 

where y = Xl; Y = X2· 

Introducing a vector X = I:~I' we obtain 

X = F(x, t) +e, 

or in a scalar form 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

It should be emphasized, that the components Cj (t) ofthe vector el (t) are 
stationary random functions of the normal white noise type (mCj = 0, K cjc; = 
SOji8 (1')). Only in this case the set of equations (4.78) can be investigated 
with the use of Markov processes. 
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If the components of the vector E are not a random white noise, for ex­
ample, ei (t) are independent and have correlation functions 

(4.81) 

the functions ei (t) should be represented as processes following linear differ­
ential equations of the first order 

(4.82) 

where c (t) is a normal white noise with the correlation function Kg (7) = 
= BoO (7), ai are unknown coefficients. The spectral densities Bg , (w) are 
determined from the equations (4.82) 

(4.83) 

At known correlation functions K e, (t) (4.81) we may obtain the spectral 
densities Be, (w) from the Wiener-Khinchin relation (3.42) 

(4.84) 

By equating the right-hand sides of expressions (4.83) and (4.84), we 
determine the unknown coefficients ai 

2 u~ai 
ai = 1fBo · (4.85) 

As a result, we obtain a set of simultaneous equations of the first order 
(4.78) and (4.82) involving a random function c (t) (a white noise) that can 
be investigated by methods of Markov processes. 

In order to determine the coefficients of the equation (4.72) let us take 
advantage of the equations of motion (4.80). Let us integrate these equations 
between t and t + Llt: 

t+L1t t+L1t 

LlXi = f Fi (Xl> X2, ... ,Xn , t) dt + f edt) dt. 

t t 

Applying the mean-value theorem, we obtain (similarly to (4.45)) 

t+L1t 

LlXi = Fj (Xl> X2, . .. ,Xn , t) Llt + ! Ci (t) dt. 

t 

(4.86) 

(4.87) 

Let us determine the coefficients ai,bij of the equation (4.72) using (4.74) 
and (4.87): 
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= SOji. 

For stationary conditions, when the conditional probability density 1 and 
the coefficients ai, bij do not depend on time, we obtain from (4.72) 

or for a two-dimensional process 

4.4 Determination of the Probability of Attaining a 
Random Function Possible Values Area Boundaries 

(4.88) 

(4.89) 

The theory of Markov processes allows us to investigate the problems per­
taining to the analysis of transients in mechanical systems, to which we can­
not obtain a solution by methods of the correlation theory. The problems of 
determining the probability of attaining a random function possible values 
area boundaries are problems that can be solved by the methods of Markov 
processes. 

Let us consider a one-dimensional random process. It is required to de­
termine the probability that the condition 

(4.90) 

is satisfied for a random function X(t) during a time interval (to, to + h). 
Let us assume that the initial distribution 

1 (x, to) = 10 (x) (4.91 ) 

is given. 
Then the required probability is 

X2 

P (Xl::; X ::; X2) = f 1 (x, t) dx. (4.92) 

Xl 
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The average time of satisfying the condition (4.90) constitutes tav = t­
to. Let us confine ourselves to a case where the coefficients al and bl do 
not depend on time. This occurs, for example, when a stationary random 
disturbance c: (t) with a zero expectation and Kg = 808 (7) is acting on the 
input of a system. We may assume that at the initial instant none of the 
process realizations had time to attain the boundary, therefore 

P (to) = 1. (4.93) 

At a large value of time t any possible realizations of the process will 
attain the boundaries, i.e. at t --+ 00 P (00) --+ O. In the independent vari­
ables range (Xl :-:; X :-:; X2); (to :-:; t :-:; (0) the conditional probability density 
f varies according to the equation (4.30): 

of a (ad) 1 02 (bd) 
-a-t = - ax + 2 ---:a:'-x7"2 -'- . (4.94) 

One of the singularities of the given problem consists in a fact that the 
range of a random function X ordinates variation is limited, and we must take 
it into account when formulating the boundary conditions. 

The probability that the trajectory has crossed the segment x, X + Llx, 
never reaching the boundary for the time t - to, is equal to 

LlP = f (x, t) Llx. 

Such trajectories are practically absent on the boundary x 
t > to, therefore f (x, t) must satisfy the boundary conditions 

(4.95) 

XI,2 at 

(4.96) 

The boundary conditions (4.96) and the initial condition (4.93) define 
the function f in a uniquely fashion. Let us suppose, that the solution of 
the equation (4.94) satisfying the boundary and initial conditions, has been 
obtained. Then, the function P (t) is known and we may find the probability 
PI that x (t) will reach the boundary within the time period t - to: 

PI = P (to) - P (t) = 1 - P (t) . (4.97) 

By differentiating the expression (4.97) with respect to t, we determine 
the probability density 

It (t) = - d:it ) . (4.98) 

Setting t = to + tl, where tl is a random variable, we obtain 

(4.99) 
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The relation (4.99) allows us to determine an average time (mtJ of the 
systems motion before reaching the boundary (tl > 0): 

00 00 

mh = j tdl (tl ) dtl = - j tl dP (to + h). (4.100) 

o 0 

Integrating the right-hand side of the expression (4.100) by parts, we 
obtain 

or (as P (00) = 0) 

00 

mtl= jP(t)dt. 
o 

(4.101) 

The solution of the equation (4.94) at the given boundary and initial 
conditions enables us to determine the probability that the random function 
X (t) will reach the boundaries by the fixed instant T. We determine this 
probability from the relation (4.95) 

X2 

peT) = j f(x,T)dx. (4.102) 

Example 4.5. An equation of motion of an inertialess piston (see Fig. 4.2) 
acted by a constant force a and a random force c (t), is of the form 

ax = a + c (t) , (4.103) 

where ax is a resistance force. The random force c (t) is a random process 
of the white noise type with a zero expectation and the correlation function 
K", = SoO (7). It is required to determine the probability that the random 
function x(t) (the displacement of the piston) will not go beyond the bound­
aries of the interval (-xo, xo) within the time period, if at t = 0 x(O) = o. 

In this case, the coefficients are al = a/a; bl = So/a2. The equation 
(4.94) takes the form 

8 f +!: 8 f _ So 82 f = 0 
8t a 8x 2a2 8x2 . 

(4.104) 

The desired probability density f (x, t) should satisfy the initial condition 

f (x, 0) = 0 (x). (4.105) 



www.manaraa.com

126 4. Fundamentals of the Markov Processes Theory 

Let us use the Fourier method to solve the equations (4.104): 

f = X (x)T(t). 

As a result, we obtain the following two equations 

dT 
- +)..2T=0· 
dt ' 

whose solutions are of the form 

T = cle->.2 t ; 

X = exp {~: x} (Cl cos )..lX + C2 sin)..lx), 

where 

2(2)..2 a2a2 
s;;- - S~ . 

(4.106) 

(4.107) 

(4.108) 

The probability density f (x, t) should satisfy the boundary conditions 
(4.96), therefore we obtain two equations to determine Cl and C2: 

X (xo) = Cl cos AIXO + C2 sin )..lXO = OJ 

X (-xo) = Cl cos )..lXO - C2 sin )..lXO = O. 
(4.109) 

The system (4.109) has a nontrivial solution (Cl =I- 0) at C2 = 0 and 
cos )..lXO = 0, from which it follows: 

A1k = (2k + 1) 7r • 

2 Xo 

We determine from (4.108) 

)..2 = So (2k+l)2 7r2 + a2( 2). 
k 2a2 4 X2 a 4 o 

(4.110) 

Finally, we obtain the following expression for the solution of the equation 
(4.104): 

{ aa } ~ ( (2k + 1) 7rX >.2) f (x, t) = exp SX L.J Ck cos 2 e- kt . 

o k=O ~ 
(4.111) 

At an initial instant (t = to = 0) the obtained expression (4.111) must 
satisfy the initial condition (4.105): 

{ aa } ~ ( (2k + 1) 7rX) exp SX L.J Ck cos 2 - = 8 (x), 
o k=O Xo 
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from which we obtain 

Xo J 2 (2k+1)7l"X d CR cos X = 
2xO 

Xo J { aa} (2k+1)7l"x J:()d exp -oX cos 2 u x x. 
uO Xo 

-Xo -Xo 

It follows from (4.112) that Ck = l/xo. 
The expression (4.111) takes the form 

f( ) 1 {aa} (~ (2k+1)7l"x _>.2t) x,t = -exp oX ~cos e k . 
Xo uO k=l 2xo 

The required probability is equal to 

(4.112) 

(4.113) 

Jxo 1 JXO {aa} ~ (>.2 (2k + 1) 7l"X) 
P (t) = f (x, t) dx = Xo exp So x t:o e- kt cos 2xo dx. 

-Xo -Xo 

(4.114) 

By integration we obtain a relationship that is true for any fixed instant 
t=T: 

(4.115) 

h b _ (2k + 1) 7l" 
werek- 2 . 

Xo 
As one would expect, the value obtained for the probability P (T) does 

not depend on the sign of the force a. The example considered assumes the 
generalized form, when the area boundaries of the possible values of the ran­
dom function x (t) at an initial instant are random (xo are random quantities 
with known distribution law), e.g. 

7l" 7l"X 
f(xo) = -cos-. 

4xo 2xo 
(4.116) 

In this case, the solution (4.111) at t = 0 must satisfy the condition 

{aa } (~ (2k+1)7l"X) 7l" 7l"X 
exp So x f::o Ck cos 2xo = 4xo cos 2xo 7l", 
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which allows us to determine Ck 

Ck = i j exp { - ~: x } (cos k:oX + cos (k +x:) 7rX) dx. (4.117) 

-"0 

Having determined the coefficients ck, we find !(x, t), and the probability 
P (t), as in the preceding case. The obtained expression (4.115) enables us to 
determine the average time of the motion of the piston without contacting 
the end faces of the cylinder through the formula (4.100): 

aa 
2chSoxo 00 (_1)2+k bk 

mtl = L (2 2 ). 
Xo k=O >.~ aS~ + b~ 

(4.118) 

Let us transform the expression (4.118), introducing a non-dimensional 

parameter 'Yl = a~ Xo and a characteristic time tk' The time tk, during 
(J' 

which the piston covers a distance equal to Xo under the action of the force 
a, is taken for the characteristic time. Since the nonrandom motion of the 
inertialess piston is described by the equation 

ax=a, 

the time tk is equal to 

Dividing the expression (4.118) by tk, we obtain the non-dimensional av­
erage time of the pistons motion without contacting the ends 

(4.119) 

where 

b _ (2k + 1) 
ko - 2 . 

It has been assumed in the example 4.5 that the pistons force of inertia 
is less than the resistance force ax and for this reason can be ignored. 

Let us consider a mechanical system, whose motion is described by a 
differential equation of the first order similar to that of (4.44). Figure4.5 
shows a rotating shaft with a disk. A known moment Mo and a random 
moment c (t) are acting on the shaft. Neglecting any moment of resistance, 
we have the following equation of the disks rotation 

Jw = Mo + c (t) . (4.120) 
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e(f) 

Fig. 4.5. 

At an initial instant the angular velocity is zero. It is required to determine 
an average time mh, at which the angular velocity will reach the value Iwal. 
To determine the average time mtl we obtain an expression similar to that 
of (4.120), where we should replace Xa with Wa and a with J. 
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5. Random Vibrations of Systems with One 
Degree of Freedom 

The theory of random vibrations of mechanical systems finds an increasing 
application in the designing practice of almost all industries. The problems 
tackled in this field include analysis of object protection systems under the 
action ofrandom disturbances, analysis of vibrations of airborne vehicle struc­
tures elements caused, for example, by the action of atmospheric turbulence, 
launch of airborne vehicles, the vehicles motion on roads with random irreg­
ularities, etc. The theory of random vibrations allows us to solve problems, 
requiring an estimate of the reliability and lifetime of structures. The theory 
of random vibrations plays an important role in vibroacoustical diagnostics. 

5.1 Free Random Vibrations of Linear Systems 

Let us consider the motion of a deterministic system (a system which does 
not contain random parameters), caused by random initial deflections from 
the equilibrium position. 

In real conditions it is impossible to implement the motion of a mechan­
ical system with absolutely exact values of initial conditions because of an 
inevitable scatter of initial data. Therefore, the real motion always differs 
from the designed one, which lead to the necessity of evaluating possible di­
vergences between the two. The simplest problem here is that of determining 
the probabilistic characteristics of the motion the generalized coordinates 
and their first derivatives - at free vibrations caused by random deviations of 
initial data, and to solve it, it is sufficient to know the linear transformations 
of random functions set forth in Sect. 2.4. 

Let us consider the free vibrations of a linear system with one degree of 
freedom (Fig. 5.1) with due regard for the resistance force proportional to the 
velocity. They are described by the equation 

y + 2nfj + p~y = 0, 

where 2n = a.lm; p~ = clm. 
The solution of the equation (5.1) takes the form 

y = e-nt(cl cospt + C2 sinpt). 

(5.1) 

(5.2) 
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Fig. 5.1. 
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At t = 0 y = Yo and y = Yo (the most general case). Having determined 
arbitrary constants Cl and C2 we obtain 

y = e- nt [Yo(cosPt + ~ sinpt) + ~ sinpt] . (5.3) 

The initial data Yo and Yo are random quantities with known probability 
characteristics (we know their expectations m yO ' m yO ' variances D yO ' DyO 
and correlation moment KyOyo) ' It is required to determine the probability 
characteristics of y and of the first two derivatives y and ii. 

By differentiating (5 .3) we find the following expression for the mass m 
velocity and acceleration: 

ii = yoj~ + yoj~, 

where 

n h = e- nt(cospt + - sinpt), 
p 

h = ~e-nt sin pt . 
p 

(5.4) 

(5.5) 

In order to solve the formulated problem we must find the probability 
characteristics of the solution, i.e . my(t), Dy(t) and the autocorrelation func­
tion Ky(t, tl)' Using the formula for the expectation of a sum of random 
functions, we obtain 

The autocorrelation function of the solution is 

Ky = M [y(t) y(t1)] 

= DYoe-n(t-t,) (cosPt+ ~sinpt) x (cosPt l + ~sinptl) 

+ ~K . [e-n(tHIl (cosPt + ~ sinpt) sinpt1 p YoYo p 
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+e-n (t 1 +t) (cosPt1 + ~sinptl) sinpt1] 

+ D;o sinptsinptle-n(hH). 
p 

(5.7) 

From the expression (5.7) at t = h we obtain the deflection variance 

(5.8) 

For non-correlating initial data (KYo'YO = 0) we have 

(5.9) 

The expressions for the mathematical expectations and autocorrelation 
functions of the first two solution derivatives take a similar form: 

my = mYojl + mYo j2; 

my = mYOil + m YO i2; 

Ky(t, t 1) = DyoA (t)A (tl) 

+ KyOYO [h(t)h(h) + h(tdh(t)] + DYo j2(t)j2(tl); 

Ky(t, tr) = DYoA(t)A(tr) 

+ KyOYO [il(t)i2(tl) + j~(tl)i2(t)] + Dyof2(t)i2(tr). 

(5.10) 

(5.11) 

When investigating the random vibrations of systems with one degree 
of freedom, we must have two nonrandom functions that characterize the 
random vibrations (both free and forced), namely my(t) and Ky(t, h), which 
differs from the classical theory of vibrations. The later, therefore, may be 
considered as the particular case of the theory of random vibrations, where 
the conditions 

are fulfilled. 
What practical result can be obtained from the presented probabilistic 

characteristics of the solution (5.6-5.9)? 
Let us consider the design scheme (see Fig. 5.1). A device can operate 

normally provided that the maximum normal stresses occurring in the built­
in end at random vibrations do not exceed the yield point of the elastic 
element material, i.e. 

(5.12) 
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where a y is the yield point; ny is the factor of safety with respect to yielding. 
The maximum normal stress a max (in clamped section) is related to the 
deflection y by relationship 

3EJx 
O"max = l2Wx y, (5.13) 

where is the Young modulus of a material; Jx , Wx are respectively the 
second moment of inertia of the section and the section modulus of the rod. 
The expectation of the stress a max and the variance will be respectively: 

m crm • x = amy(t); 

Dcrm• x = a2 Dy(t), (a = 3EJx /l 2wx ). 
(5.14) 

Considering that there is a normal distribution for amax(t) at each instant, 
let us use the three sigma rule to determine the maximum stress max( ama><) : 

(ay = VJS;). (5.15) 

As the maximum stress depends on time, we should determine such value 
t* at which max(amax) takes a maximum value in time. Having determined 
t* we obtain the following final condition, the fulfillment of which ensures the 
normal operation of the elastic element: 

(5.16) 

The motion of a system after the termination of the short-term random 
impulse action (whose time of action is far less than the period of natural 
vibrations) can be classed as free vibrations. 

Example 5.1. Figure 5.2 shows a single degree-of-freedom mechanical 
system consisting of an absolutely rigid body, part of which is subjected to 
the action of a shock wave. In this case, the impulse of a moment J M is acting 
on a rod, imparting it some initial angular velocity (at zero initial angular 
displacement), i.e. at t = 0, ipo = 0, cP = CPo. The impulse of a moment is 
related to the initial velocity by the relationship 

(5.17) 

where Jo is the moment of the bodys inertia with respect to an axis perpen­
dicular to the drawing and going through the point 0. 

It is required to determine the parameters of the shock-absorption system 
(c and a) from the conditions: 1) the maximum angular displacement of the 
body under the action of the impulse of a moment should not exceed the 
admissible ipD; 2) in a given time tk the amplitude of the angular vibrations 
of the body should decrease by k times. If the probability characteristics of 
the random impulse J M are known (mJ and D J ), then also known are the 
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Fig. 5.2. 

probability characteristics of the initial angular velocity CPo (mcjJO 

DcjJo = ~t). 
The body motion equation takes the form 

exZ 2 cl2 

tp + --:J:;CP + Jo ip = O. 

As ipo = 0, the probability characteristics of the solution are: 

m 
m", = ~e-nt sinptj 

p 

D 
K", = ~Oe-n(t-t!lsinptsinptl; 

p 

(5.18) 

(5.19) 

The maximum value of the angle ip for any instant (with the use of three 
sigma rule) is 

(mJ + 30'J) -nt . 
ipmax = m", + 30'", = 7 e smpt . 

..loP 
(5.20) 

71'1 
The function ipmax attains the first maximum value at an instant h = '2 p' 

therefore, neglecting the influence of friction forces (e- nt ~ 1, p ~ Po) at a 
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time interval (0, tl) and using the first condition, we obtain 

mJ + 30"J 
t,pmax = t,pD = 

JoPo 

From (5.21) we determine 

(mJ + 30"J)2 
c = Jot,p'bP 

The full time (see the second condition) 

(k1 = 1,2, ... »). 
From expression (5.20) 

k (mJ + 30" J) -nt/o . 
t,pmjx = t,pD = Tel smptkl· 

o.IoP 

By manipulations we obtain from (5.23) 

kR- 2 _ {_ (2kl -1)1fn1 } 
n1-exp ~' 

2y 1- n~ 
(nl = .::). 

Po 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

Depending on specific values of k and kl' we find nh - the root of the 
equation (5.24). Knowing nh, we then determine the optimum coefficient of 
the viscous friction force in the shock-absorption system 

2pOJOnh 
Ct. = l2 (5.25) 

5.2 Forced Random Vibrations of Linear Systems 

5.2.1 Non-Stationary Vibrations 

An equation of forced vibrations of a linear one degree-of-freedom system 
with constant parameters takes the form 

1 
ii + 2ny + P5Y = - f(t), 

m 
(5.26) 

where f(t) is a random force. 
In order to determine the probability characteristics of the solution of the 

equation (5.26) we must have the probability characteristics of the input and 
the probability characteristics of its initial data, i.e. mj, Kf> m yo ' m yo ' K yOYO , 
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DyO ' DiJo ' K fyo' K fyo' Let us confine ourselves to the case where the initial 
data and the random force f are independent, i.e. KYoiJo = Kfyo = KfiJo = O. 

We may present the solution of the equation (5.26) for an arbitrary right­
hand side as 

Y = e-nt [YO (cosPt + ~ sinpt) + ~ sinpt] 

t 

+ ~ ! e-n(t-T) sinp(t - r)f(r)dr. 

o 

The expectation and autocorrelation function of the solution are 

my = e-nt [myO (cosPt + ~ Sinpt) + m;o sinpt] 

t 

+ ~ ! e-n(t-T) sinp(t - r)mfdr. 
mp 

o 

(5.27) 

(5.28) 

Ky(t, td = e-n(t+t.) [Dyo (cosPt + ~ sinpt) . (cosPt1 + ~ SinPt1 ) 

+ ~ DiJo sinptSinPt1] 

t tl 

+ m;p2!! e-n(t-T) sinp(t - r)e-n(t1-Td Sinp(tl - rl)Kf(r,rl)drl dr. 

o 0 
(5.29) 

The variance of the solution is 

Dy(t) = e-2nt [Dyo (cosPt+ ~sinpt)2 + ;2DiJoSin2pt] 

t tl 

+ m;p2!! e-n(t-T)e-n(t1-T) sinp(t - r) sinp(tl - rdKfdrl dr. (5.30) 

o 0 

In the particular case of Yo = Yo = 0, 

t 

my = ~! e-n(t-T) sinp(t - r)mf(r)drj 
mp 

o 

(5.31) 
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(5.32) 

Let us consider the particular case of a random constant force with a here­
after retained constant value being applied to a system, i.e. f = aH(t), where 
a is a random quantity (a force) that has known probability characteristics 
ma and Da; and H(t) is the Heaviside function. 

In this case, the probability characteristics of the solution are: 

t 

m = ma ! e-n(t-T) sinp(t - r)dr; 
Y mp (5.33) 

o 

t t, 

K = ~ !!e-n(t-T)e-n(tl-T,) sinp(t - r) 
Y m 2p2 

o 0 

x sinp(tl - Tl)drdTl. (5.34) 

By integrating we obtain 

m - ma 1 [p(l _ cospte-nt ) _ nSinpte-nt] ; 
Y - mp (p2 + n2) 

(5.35) 

K = ~ 1 [-nsinpte- nt + p(l - cospte-nt )] 
Y m2p2 (p2 + n2)2 

x [-nsinptle-nt, +p(l-cosptle-nt,)]. (5.36) 

The variance of the solution is 

D Da [. t -nt+ (1 t -nt)]2 
Y = 2 2( 2 2)2 -nsmp e p - cosp e . m p p +n 

(5.37) 

If an equation of small vibrations contains coefficients that vary in time, 
it is generally impossible to obtain a solution in the analytical form. For 
example, the approximate equation of the small vibrations of a rocket engine 
(Fig. 5.3), caused by a random scatter of the thrust LJ.R due to non-uniform 
combustion of a charge, takes the form 

m(t)LJ.x + aLJ.x + cLJ.x = -LJ.R (5.38) 

or 

(5.39) 
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Ro+~R 

x 

Fig. 5.3. 

Q c iJ.R 
where aI(t) = -; a2(t) = -; J(t) = --. 

m m m 
Let us present the equation (5.39) as a system of two equations of the 

first order, setting iJ.i: = YI; iJ.x = Y2 : 

(5.40) 

or in the vector form 

y + A(t)y = f, (5.41) 

where 

The solution of the homogeneous equation (5.41) is 

Yo = K(t)yoo, (5.42) 

where K(t) is a fundamental matrix of solutions satisfying to the condition 
K(O) = E (E is the identity matrix); and Yoo is the initial values vector. We 
cannot always obtain the elements of the matrix K(t) in the analytical form, 
but there is no need to do so when it comes to producing numerical solutions 
to this kind of equations. 

Let us find the general solution of the equation (5.41), using the Lagrange 
method of variations of arbitrary constants. Considering Yoo a function of 
time, let us substitute (5.42) in the equation (5.41) : 

Kyoo + Kyoo + AKyoo = f. (5.43) 

As K satisfies the corresponding homogeneous equation, we obtain from 
(5.43) 

Kyoo = f, (5.44) 

whence 
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1 

Yoo = J K-1(r)f(r)dr + C. 

o 

(5.45) 

The general solution of the equation (5.41) with due account of (5.45) is 

t 

Y = K(t)C + J G(t, r)f(r)dr, 
o 

where G(t, r) = K(t)K-l(r) is a Green matrix. 

(5.46) 

The principal difficulty of numerical determination of a solution in the 
form (5.46) is the determination of the matrix K(t, r) that depends on the 
inverse matrix K- 1 (r) necessarily obtained on each step of the numerical 
solution process. For equations whose solution can be obtained in special 
functions (Bessel equation, Legendre equation, Hermite equation, etc.), we 
may represent the matrix K(t, r) in an analytical form in terms of special 
functions. 

For equations with constant coefficients, the Green matrix depends on the 
difference of arguments 

G(t, r) = K(t - r). 

When it is necessary to obtain a solution for the fixed instant (t = tk), we 
can obtain the Green'matrix G(t, r) without the determination of the matrix 
K-1(r). 

Let us differentiate the identity K(r)K-1(r) = E : 

d dK-1(r) 
dT K(r)K-1(r) + K(r) dr = O. 

Let us multiply (5.47) from the right by the matrix K(r), then 

k + Kk-1K = o. 

The matrix K satisfies the equation 

k(r) + A(r)K(r) = 0, 

therefore, excluding k, we'll obtain 

-AK +Kk-1K = 0, 

whence 

(5.47) 

(5.48) 

(5.49) 

(5.50) 
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Let us multiply equation (5.50) from the left by K- 1 : 

](-1(r) - K-1(r)A(r) = o. (5.51) 

Let us multiply the equation (5.51) from the left by the matrix K(tk) and 
transform it to the form 

(5.52) 

where G(tk' r) = K(tk)K-1(r). 
Hence it follows, that the Green matrix satisfies the matrix equation 

(5.52). Let us apply the conjugation operation (that of transposition for ma­
trixes with real elements), to the equation (5.52), then 

~* - (GA)* = 0, 

or (since (GA)* = A*G*) 

~* -A*G* = O. 

(5.53) 

(5.54) 

The value ofthe Green matrix is known at r = tk (since G = K(tk)K-1(r), 
G = E at r = tk), therefore it is necessary to introduce a new independent 
variable r1 = tk - r. As a result the equation (5.54) takes the form 

dG* A*( )G* -d + r1 =0. 
r1 

(5.55) 

As the value of the integral in the expression (5.46) at the fixed limits does 
not depend on the direction of integration (r = tk - rd, a matrix G*(tk' rl), 
obtained when solving the equation (5.55) after a conjugation operation is 
used in the integral evaluation (the second term in (5.46)). 

404 

/ G(tk' r)f(r)dr = - / G(tk' rdf(r1)dr1 = / G(tk' r1)f(r1)dr1. 
o tk 0 

The outlined methods of determining the solution of the equation (5.41) 
and the Green matrix are true not only for the system of the second order 
(5.40) (that was used as an example in performing all necessary transforma­
tions), but also for systems of any order. These methods will be applied later 
during the investigation of random vibrations of systems with n degrees of 
freedom and systems with distributed parameters. 

In the process of numerical calculations we may obtain the matrix 
K*(tk' r) in the following way. Let us consider a vector equation of the form 

(5.56) 
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By solving the equation (5.56) two times (or 2n times for a system with 
n degrees of freedom) at the following initial conditions: 

1) r1 = 0; b1 = 1; b2 = 0; 
2) rl = 0; b1 = 0; b2 = 1, 

we obtain the columns of the matrix G* or the rows of the Green matrix. 
In a scalar form, the solution (5.46) takes the form 

t 

Yl = kll C1 + k12 C2 + J g11(t, r)fdr; 

° t (5.57) 

Y2 = k21 Cl + k22 C2 + J g21(t,r)fdr. 

° 
As at t = 0 y(O) = YlO, Y2(0) = Y20, and K(O) = E, the arbitrary 

constants are equal to Cl = YlO, C2 = Y20. 
Let us find the probability characteristics of the solution (5.57), consid­

ering YlO, Y20 and f to be independent: 

t 

m y, = k11 mylO + k12mY20 + J g11 m jdr; 

° t 
m Y2 = k21 m y,o + k22mY20 + J g21 m jdr. 

° 
Ky, = D ylO kll (t)k 11 (h) + DY20kI2(t)kI2(h) 

t tl 

+ J J gl1(t,r)gll(tl,rl)Kjdrdrl; 

° 0 

KY2 = DY20k21(t)k22(h) + DY20k22(t)k22(h) 
t h 

+ J J g21(t,r)g21(h,rl)Kjdrdrl. 

° ° 

(5.58) 

(5.59) 

In the general case, the calculation of the integrals involved in the expres-
sions (5.59) offers some difficulties. It is most easy to calculate them when 
the autocorrelation function of a force can be represented as a product of two 
functions depending only on one argument, i.e. 

(5.60) 

If the autocorrelation function of excitation takes the form of (5.60), we 
may present the integrals entering (5.59) as 



www.manaraa.com

5.2 Forced Random Vibrations of Linear Systems 143 

t t, ! ! 9iJ(t, T)9ij(t 1 , Tl)Kf(T, TddTdTl 
o 0 

t t, 

= a ! 9ij(t, T)<p(T)dT ! 9ij(tb Td<p(TddTl. 

o 0 

(5.61 ) 

Let us consider several examples of the random non-stationary vibrations 
of a system with one degree of freedom. 

Example 5.2. Figure 5.4 shows a mast with an antenna placed in a 
spherical shell transparent for radiowaves. The mass of the antenna is con­
sidered to be point. In order to increase the stiffness of the mast in a plane 
ZOY two cables with a tension No are attached to it. At an instant to = 0 a 
homogeneous air stream whose velocity v is a random variable, has suddenly 
acted on the mast with the antenna, resulting in the appearance of a random 
aerodynamic force F constant in time (Fig. 5.4 b). Let us suppose that the 
probability characteristics of the force F (mF, DF)are known. We neglect 
the aerodynamic forces acting on the mast. It is required to determine the 
greatest possible angle I of antenna beam deflection from the given direction 
assuming, that the angle I obeys a normal distribution law. 

z 

~ 
Fo~ 

t y 
b) 

Fig. 5.4. 

Vibrations caused by the variation of cable forces lead to the appearance 
of a force i1P depending on displacement YA (Fig. 5.5 a). 
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z 

z 

a) b) 

Fig. 5.5. 

Let us consider the deflected position of the mast (Fig. 5.5 a). The varia­
tions of forces in cables L1N1 and L1N2 (Fig. 5.5 b) depend on "elongations" 
L1h and L1l2, i.e. L1N1 = cL1h, L1N2 = cL1l2. 

The variations in the length of cables are equal to 

L1h = YA cos /31, L1l2 = YA cos /30' (5.62) 

As YA and 8/31 are small quantities, L1h = YA cos/3o· 
The forces in cables N1 and N2 are shown in Fig. 5.5 b. Projecting N1 N2 

on the axis Y, we obtain a force L1P arising at the vibrations 

L1P = N1 cos /31 - N2 cos /32 = 

= (No + cL1l1) cos{/3o - 8(31) - (No - cL1l2) cos{/3o + 8(32) 

or 

(5.63) 

It follows from Figure 5.5 a that 

Excluding 8/31 and 8/32 from (5.63), we obtain 

( 2 a No. 2(3) L1P = 2 ccos fJO + -l- sm 0 YA = C1YA · (5.64) 

Using the force method, let us obtain the equations of small vibrations of 
the mast with the antenna (Fig. 5.4 a) (ignoring the dissipative forces) 
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Y = 0l1( -My + F) + 012LlPl, (LlP1 = -LlP) 

YA = 021( -My + F) + 022LlPl. 
(5.65) 

Excluding YA (LlP1 = -CIYA) from the system (5.65), we obtain by trans­
formations the equation 

.. 2 F 
Y+PoY = M' (5.66) 

where 

2 (1 + CI022) 
Po = M [022 + Cl(On022 - 012 02dJ' 

The solution of the equation (5.66) at zero initial data takes the form 

t 

1 ! F 1 F Y = - sinpo(t - 7) "1M = ""2' (1 - cos Pot) -. 
Po 1~ Po M 

(5.67) 

o 

Using the force method we can obtain the following expression for the 
angle of rotation of the mass M (the angle 'Y) 

__ 1_ [LlP(1)lr (J + F)l2] 
'Y - EJ 2 + 2 ' 

or 

= _1_ [_ CIYAlr (-MY+F)l2] 
'Y EJ 2 + 2 . (5.68) 

Excluding YA and y from (5.68), we obtain after transformations 

a 
'Y = EJ (- cos Pot + l)F, 

where EJ is the flexural rigidity of the mast. 
Let us determine the expectation and variance of the angle 'Y 

a 
m"'( = EJ (1 - cosPot) mp, 

a2 2 
D"'( = EJ2 (1 - cosPot) Dp. 

(5.69) 

The greatest possible deflection of the angle 'Y is equal to 

(5.70) 

Let us determine the maximum value max'Y in time. Differentiating (5.70) 
with respect to t, we obtain 
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d(max,) a(mF+3aT) . 0 
dt = EJ posmpot=. 

7r 
The maximum value of the angle , is reached at an instant t* = - . At 

Po 
this instant the maximum value of the angle (max,) is equal to 

(5.71) 

Having determined the maximum value of the angle , at the arising ran­
dom vibrations of the mast with the antenna, we can check up the fulfillment 
of the condition of the antennas faultless operation 

(5.72) 

where ,0 is the admissible value of the antenna beam deflection angle. 
Example 5.3. Figure 5.6 a shows the elevation mechanism with a mass 

m being clamped on the end of an extensible cable. At elevation (the drum 
rotates with constant angular velocity wo) the longitudinal vibrations of the 
mass m arise because of the random variation of a friction force between the 
mass m and the guides. These vibrations give rise to the occurrence of a cable 
dynamic tension L1N, which fact must be taken into account at the analysis 
of cables strength and life. Assuming, that the random dynamic tension is 
normally distributed, let us determine the greatest possible tension according 
to the formula (at mLlN = 0) 

(5.73) 

where a LlN is the root-mean-square value of the random dynamic tension. It 
may be considered that the friction force between the mass m and the guides 

r 

Fig. 5.6. 

x 

a) b) 

N 

J 



www.manaraa.com

5.2 Forced Random Vibrations of Linear Systems 147 

is a force of dry friction. With due regard for random scatter the force of dry 
friction is equal to 

FT = FTosignv - .dFT, (5.74) 

where .dFT is the random component of the friction force; v is the velocity 
of the weights motion. The velocity is 

v = Vo + .d±, (vo = wor = const), 

where .dx is the elongation of the cable at weight vibrations. 
Let us assume, that the velocity Vo exceeds the greatest possible random 

velocity .d±, therefore sign w = 1 : 

FT = FTO - .dFT. 

Using the d'Alembert principle, we obtain (Fig. 5.6 b) the equation 

J - mg + N - FT = o. 

Since 

J = -mv; N = No + .dN; 

No = mg + FTO; .dN = -.dxEF, 

from (5.75) we obtain the equation of the small vibrations of the mass 

m.dx + ~F .dx = .dFT . 

(5.75) 

(5.76) 

When determining the length of the cable l, we may neglect the elongation 
caused by the weight vibrations. In other words, it is possible to assume that 
1 = lo - vot. 

The equation of the small vibrations of the mass (5.76) takes the form 

A.. EF A .dFT 
ux+ ux=--. 

lo(I-~:t)m m 

(5.77) 

By replacing the argument t with 

EFlo (1- VOt) n 
__ ~---;:-_l.;:.o~ = a 1 _ Vo t 

mV5 lo 

the equation (5.77) is reduced to Bessels equation. 
The solution of Bessels homogeneous equation can be presented in an 

analytical form in terms of Bessel functions: 
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Llx = Clt1J1(tl) + C2tlYl(tl); 
2EF 

Ll± = - [C1JO(t1) + C2YO(tl)]--, 
VOm 

or, turning back to the argument t, we obtain 

Ll± = CI!11(t) + C2!12(t); 
Llx = cI!21(t) + c2h2(t). 

The Green matrix for the given case is 

where D = 111(r)h2(r) - !I2(r)hl(r). 

(5.78) 

(5.79) 

The solution of the equation (5.77) at zero initial data takes the form 

t 

Ll± = J [lll(t)h2(r) - !I2(t)hl(r)] LlFT dr-
Dm ' 

(5.81) 

o 
t 

A = J [hl(t)h2(r) - 122 (t)hl (r)] LlFTd 
uX Dm r. (5.82) 

o 

Experimental investigations show that the random scatter of a dry friction 
force can be presented as a process shown in Fig. 5.7. The random component 
of the friction force LlFT may be approximately regarded as a stationary 
random function limited in absolute value and having random instants of sign 
reversal. A realization of such process is shown in Fig. 5.7. To generate an 
exhaustive characteristic of the process we must also know the distribution of 
points of passage through zero (the distribution of zeros), i.e. the probability 
P( n, r), where n is the number of zeros on an interval of time r ( n is a 
random quantity). 

The plot of LlFT(t) variation in time, presented in Fig. 5.7, is an idealized 
one, as the finite quantity of an instant change in a friction force (in a random 
component) is impossible. This idealization, however, allows us to use the 
Poisson distribution law (see Sect. 1.4) 

P(n, r) = (J.Lr)n e-wr, 
n! 

(5.83) 

where J.L is the average frequency of zeros falling at a time interval unit. 
We may express the expectation (parameter ) in terms of J.L and time t, 

assuming that a = J.Lt. This has been accomplished in the expression (5.72). 
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r--

t1 t2 t3 t4 
t 

"---

-FTO 

Fig. 5.7. 

The section of a random function LlFr(t) has a distribution law presented 
by the series 

Table 5.1. 

Pi(t) 

-LlFro 

1 

2 

+LlFro 

1 

2 

As the sign reversal instants of the function LlFr are in no way related 
to the value of the random function, there is no reason for considering any of 
the values +LlFro, -LlFro to be most probable, therefore 

1 1 
mLlF = +2LlFro - 2LlFro = 0; 

21 2 1 2 
DLlF = (-LlFro) 2" + LlFro2 = LlFro · 

(5.84) 

Let us find the correlation function, using its definition (see Sect. 2.2) 

(5.85) 

The product LlFr(t)LlFr(h) is equal to -1, if an odd number of sign 
reversals occurs between the instants and changes its value to + 1 when the 
number of sign reversals within this period becomes even. The probability 
that an even number of sign reversals will take place in time T = tl - t is 

(5.86) 
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The probability that an odd number of sign reversals will take place in 
time is 

(5.87) 

Knowing Pe and Po, let us determine 

KLlFT(t, tl) = IlPf.oPe -IlFf.oPo = e-2J.'7" IlFf.o· (5.88) 

The expression obtained is true for tl > t. Similarly, at h < t, we'll obtain 

Let us combine (5.88) and (5.89), then 

KLlFT(t, td = IlPf.oe-2J.'17"1. 

The correlation function of the solution is 

t t, 

(5.89) 

(5.90) 

KLlx = ! ! k21 (t, 7)k21(tl,71)IlPf.oe-2J.'leld7d71 (e = 7 - 71). (5.91) 

o 0 

The variance of the random tension is 

(5.92) 

We can only integrate the right-hand side of the expression (5.92) nu­
merically, but to do it we must know the value of the factor J.t (the average 
frequency of zeros), which can only be determined experimentally. Therefore, 
let us determine the maximum value U LlN (or D LlN* ). It follows from the 
structure of expression for DLlN that the maximum value of DLlN* will be at 
e-2J.'l e l = 1, which corresponds to the limit case of J.t = o. For this limit case 

(5.93) 

As a result of calculations, we obtain an upper bound of the possible 
maximum values of the cables tension, assuming that IlN* has the following 
normal distribution 

Nmax* = mg + 3u LlN* . 

Let us consider the non-stationary vibrations of a mass m (the equation 
(5.26)), at a stationary random force of the white noise type 
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where So is the intensity (spectral density) of the stationary white noise. 
The white noise (5.94) is a random function, whose values at t =f. tl are 

not correlated. In the physical context of view the condition of the noncorre­
latedness of two values of a random function for an arbitrary small interval 
of time is equivalent to the condition of absolute inertialess process, which, 
of course, is incorrect. Any real physical process has an inertia, therefore 
the values of a random function describing the process, at a given instant 
partially determine its values at adjacent instants. 

Any physical quantities, including time, are measured with a certain error; 
all values of the considered quantity, the difference of which is smaller than 
the error, are considered to be coinciding. Therefore, in practical plane we 
may regard a random function as a white noise, if the correlation of its values 
is only extended to the intervals of the arguments variation that is less than 
the minimum discernible one at the assumed accuracy of measurements. We 
can use the integration step h = Llt as the characteristic interval of time. 
The correlation function of the stationary random function can be presented 
in the following form (r = t - td 

(5.95) 

where cp{r) is the decreasing function of the argument r (at r = 0 cp{O) = 1). 
The relative variation of the correlation function within the integration step 
is 

Ll = Kf{h) = cp{h). 
Df 

(5.96) 

If at the assumed accuracy of the solution it is possible to put Ll ~ 0, 
then the random function f{t) can be considered a white noise. 

In approximate calculations, when the process time is much greater than 
the interval of correlation, a random function can be approximately consid­
ered a white noise, the intensity of which (a special case of the Wiener­
Khinchin formula at w = 0) is 

00 

So = ! Kf{r)dr, 
-00 

where Kf{r) is a real correlation function, differring from the delta function. 
For example, if 

(5.97) 

then the intensity of the "real" white noise is 
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00 

So = D f j e-alT1dr = 2~f. 
-00 

Let us determine the correlation function Ky for the case when Kf is 
defined by the expression (5.94) 

or 

t t, 

Ky = m!p2 j j k(t - r)k(t1 - rdsoJ(r - rdciTdrl 

o 0 

K, ~ ,,;,:,,! k(t - r) [1 k(h - r,j8(r - n)dn] dr 

t 

= :0 2 jk(t - r)k(tl - r)dr, 
mp 

o 

where 

k(t - r) = e-n(t-T) sinp(t - r), 

k(t l - r) = e-n(t,-T) sinp(t 1 - r). 

The variance of a solution is 

t 

So / 2 Dy(t) = ~ k (t - r)dT. 
mp 

o 

5.2.2 Stationary Forced Vibrations 

(5.98) 

(5.99) 

(5.100) 

If the linear equation of small vibrations of a system with one degree of free­
dom has constant coefficients and the solution of the homogeneous equation is 
asymptotically stable, random stationary vibrations (at a random stationary 
right-hand side) are possible in such a system. 

Let us consider the stationary random vibrations of systems with one 
degree of freedom. If the motion of a system is described by linear equations 
with constant coefficients and the homogeneous part of these equations has 
asymptotically stable solutions, the conditions of stationary vibrations are 
possible (at a stationary right-hand side). 

It is possible to find the spectral density of the stationary random function 
f (the equation (5.26)), knowing its correlation function Kf(r) 

(5.101) 

-00 
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It has been shown in Sect. 3.6, that the spectral density of the input is 
related to the spectral density of the output by relationship 

(5.102) 

where 

From the spectral density of the output Sy (w) we can find the correlation 
function of the output and the variance: 

00 
Ky(r) = / Sy(w)coswrdw 

-00 

= -\ /00 1 (.)2 ;. 212 Sj(w) coswrdr; 
m zw + nzw + Po 

(5.103) 

-00 

D = ~ /00 1 1 12 S (w)dw. 
y m 2 (iw)2+2niw+p~ j 

(5.104) 

-00 

In a particular case, where we may approximately consider the random 
disturbance to be a white noise (Sj(w) = So = const), we obtain 

So /00 1 1 12 Ky(r) = 2 (·)2 2· 2 coswrdr; 
m zw + nzw + Po 

(5.105) 

-00 

D = So /00 1 1 12 dw. 
y m 2 (iW)2 + 2niw + P~ (5.106) 

-00 

We may present the integrals entering the expressions (5.104) and (5.106) 
as (3.87) 

00 
1 / G(iw) 

I n = 211" IA(iw)1 2dw. 
-00 

The values of integrals I n are presented in Appendix 2. 
If, for example, 

then the spectral density is equal to 

(5.107) 
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S (w) = D 2a _ 2aD f 
f f (a2 + W 2 ) la + iwl2 . 

Using (5.104), we obtain 

D = 2aD f /00 1 1 12 dw 
Y m2 (iW)2 + 2iwn + P5 la + iwl2' 

-00 

or 

00 

D - 2Dfa / dw (5.108) 
Y - m 2 I (iw)3 + (2n + a)(iw)2 + (P5 + 2na)iw + P5a12· 

-00 

The integral in the expression (5.108) is a special case of the integral 
(5.107) at G(iw) = 1. Using the Appendix 2, we obtain 

D Df 1I"(2n+a) 
Y = m 2 n(P5 + 2na + ( 2)p5 . 

(5.109) 

The variances of the first and second derivatives of the solution are 

00 

Dy = / IW(iw)1 2 w2Sf(w)dw 
-00 

or 

00 

D. - 2Dja / -(iw)2dw . (5.110) 
Y - m2 l(iw)3 + (2n + a)(iw)2 + (P5 + 2na)iw + P5a 12' 

-00 

00 

D·· = 2Dja / (iw)4dw (5.111) 
Y m2 l(iw)3 + (2n + a)(iw)2 + (P5 + 2na)iw + P5a 12· 

-00 

Using the value of h (Appendix 2), we'll obtain 

D. _ Dja 11" • 

Y - m2 n(P5 + 2na + ( 2) , 

D .. = Dja 1I"(P5 + 2na) 
y m 2 n(p~ + 2na + ( 2) . 

(5.112) 

Example 5.4. In order to determine the horizontal acceleration of a body 
there is an accelerometer of a mass ml attached to the body of a mass m 
(Fig.5.8) moving with an acceleration. The body moves under the action 
of a force R having a stationary random component LlR(t) with a known 
correlation function (m<1R = 0) 
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Ro+~R 

x 

Fig, 5.S. 

(5.113) 

It is required to determine the displacement variance of the mass ml, 
caused by the random component of the force R. The equation of the random 
vibrations of the mass ml (neglecting the acceleration of a rocket caused by 
LlR, as ml « m) is 

(5.114) 

where LlXl is the random relative displacement of the mass mi, caused by 
the action of LlR. 

The spectral density of the thrust scatter 

00 

S.4R(W) = D.4R J e-a1rl (COS/h + ~ Sin,8l r l) coswrdr. (5.115) 

-00 

By integrating we obtain 

(5.116) 

We may present the expression (5.116) as 

S.4R(W) = 4D.4Ro:(0:2+,82) 2' 
l(iw)2 + 20:(iw) + 0:2 + ,821 

(5.117) 

The spectral density of a displacement LlXl is equal to 

(5.118) 
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The variance of a random displacement takes the form 

where 

IACiw)12 = ICiw)4 + 2(a + n)(iw)3 + (a2 + (32 + 4na + p~(iW)2 

+ [2n(a2 + (32) + 2ap~l (iw) + p~(a2 + (32)12 

= lao(iw)4 + al(iw)3 + a2(iw)2 + a3(iw) + a412. 

Using the Appendix 2, we obtain 

D 4k2 D LlRa( a 2 + (32)7f 
LlXl = P5(a2 + (32)(a~ + aia4 - ala2a3)' 

Assuming that .1Xl has a normal distribution, we can estimate the great­
est possible error of the accelerometer indications (mLlXl = 0) 

Let us consider the stationary vibrations of a mass m, caused by a sta­
tionary force J(t) with a known spectral density Sf (mf = 0) (Fig. 5.9) . Let 
us determine the greatest possible value of a normal stress am that arises in 
the section of a rod at z == 0" assuming, that am has a normal distribution. 
The simplest way to obtain the equation of the small vibrations of the mass 
m with due account taken of the damping device is to apply the force method 
based on the principle of superposition. 

Y J 

iJN / YK .......,../ . f(f) 
Y 1<...-' m 

- ' K 
z 

f(f) 

Fig. 5 .9. 
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By the force method the displacements of masses G and m are equal to 
the sum of displacements due to each of the forces applied to a system, i.e. 

Y = 811 (J + f) + 812N, 

Yk = 821 (J + f) + 822 N, 

(J = -my) 
(5.119) 

where 8ij are the compliances of the system, N is the force of viscous resis­
tance that is equal to 

N = -aYk. 

The force method is one of the most effective methods of deriving equa­
tions of small vibrations (when the stresses arising in elastic elements obey 
the Hooke law). For example, it is very difficult to obtain equations of small 
vibrations for the mechanical system presented in Fig. 5.9, using the Lagrange 
equations of the second kind. 

An interesting feature of the given problem is that two differential equa­
tions have been obtained for a system with one degree of freedom. The point 
is that the mechanical system shown in Fig. 5.9 belongs to the systems with 
a fractional number of degrees of freedoms. The system of equations (5.119) 
is a third-order system. 

Let us obtain the following images of the equations (5.119) in the fre­
quencyarea 

Y(iw) = -01lm(iw)2Y(iw) - 012a(iw)Yk(iw) + 8n fo(iw); 

Yk(iw) = -021rn(iw)2Y(iw) - 822Q(iw)Yk(iw) + 02do(iw). 
(5.120) 

From the system of algebraic equations (5.120) we determine the images 
Y and Yk in the frequency area 

Y(iw) = W 1(iw)fo(iw), 

Y(iw) = W 2 (iw)!o(iw), 

where 

W ( . ) _ 8n + Q(iw)(ou822 - 012 (21) 
12W- Ll ' 

. 821 
W2 (zw) = Lf' 
Ll = (1 + ollm(iwf)(l + 822Q(iw)) - 812821Q2(iw)3. 

The maximum normal stress in the rod at z = 0 is equal to 

M(t) 
O"m(t) =-w' 

where M is the bending moment, W is the section modulus. 

(5.121) 

(5.122) 
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The bending moment is equal to 

M(t) = 2l(J + f) + Nl 

or 

M = -2lmy + 2lf - a:Ykl. (5.123) 

Having passed to the image (.5.123) in the frequency area, we obtain 

Mo(iw) = -2lrn.(iw)2Y(iw) - al(iw)Yk(iw) + 2lfo(iw). (5.124) 

Excluding Y(iw) and Yk(iw) from (5.124) we obtain 

Mo(iw) = W3 (iw)fo(iw), (5.125) 

where 

.) [2,1- a(iw)822 - 2m(iw)2(811 + a(iw)(811822 - 812821)] 
W3(~W = ,1 l. 

As 

the spectral density and variance of the maximum stress are equal to 

(5.126) 

-(Xl 

The greatest possible value of CT m is 

maxr7m = 3JD(J'rn' 

5.3 Vibrations Caused by Random Kinematic Excitation 

Let us consider vibrations of one-mass mechanical systems caused by the 
forced random displacement (or rotation) of elastic elements discrete points 
(Fig. 5.10 a) (or sections (Fig. 5.10 b)). 

A special feature of the systems presented in Fig. 5.10, is that kinematic 
excitations are attached to zero-mass points, which complicates the derivation 
of equations of lumped masses m vibrations. 
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y J 

Fe 

'-'-.. -' y 

y 

b) 

Fig. 5.10. 

5.3.1 Non-Stationary Random Vibrations at Kinematic Excitation 

Let us obtain the equations of small vibrations of a mass m, using the force 
method and introducing an unknown force at linear kinematic displacements 
applied to a point k (in Fig. 5.10 a the force is shown by the dotted line) or 
an unknown moment Mk at angular kinematic displacements (Fig. 5.10 b) as 
well as forces of inertia J = -my and forces of resistance Fe = -ay. For 
example, for the system shown in Fig. 5.10 a, we obtain two equations 

Y = 1511 (-my - ay) + 812 P(t), 

Yk(t) = 821 ( -my - ay) + 822 P (t) , 
(5.127) 

where 8ij are the compliances of the system and Yk(t) is the given function. 
Excluding the force from the first equation of the system (5.127) and 

carrying out the necessary transformations we obtain the equation 

( 15121521 ) 1512 Y = 1511 - -- (-my - ay) + -Yk 
1522 1522 

(5.128) 

or 

(5.129) 
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where 

a 
2n= m' 

2 022 

Po = m(OU 0 22 - 012( 21)' 

The solution of the equation (5.129) with the determination of the prob­
ability characteristics of Y (at the known probability characteristics of the 
right-hand side) is presented in Sect. 5.2 (relationships (5.28), (5.29) and 
(5.30». 

Let us consider a problem where it is required to determine the variation 
in time of the greatest possible force arising in a section at the non-stationary 
vibrations of a mass m at zero initial data. When determining the greatest 
possible force , let us assume that the distribution of the probability density 
of the force pet) will obey the normal law. Let us obtain an expression for 
the force pet) from the second equation of the system (5.127) 

P( ) 1 (SZI ( .. . ) t = -Yk - - -my - ay . 
622 622 

We determine from the equation (5.128) 

( .. .) ( ( 12 ) 022 
-my - ay = y - --r-Yk (J: J: J: J: ). 

U22 UIIU22 - U12U21 

Excluding (-my - ay) from the equation (5.130), we obtain 

pet) = "/IYk - "/2Y, 

where 

(5.130) 

(5.131) 

At zero initial data the solution of the equation (5.129) takes the form 

t t 

Y = ; J e-n(t-r) sinp(t - r)Yk(r)dr = ; J get - r)Yk(r)dr. 
o 0 

The expectation mp(r) is equal to 

Let us obtain the correlation functi'On and the variance of the random 
force 

or (omitting the intermediate transformations) 
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t t' 

Kp(t,t') = I'~KYk(t, t') + ! ! g(t - T)g(t' - T')Kyk(T, T')dTdT' 
o 0 

t' t 

-1'02 jg(t'-T')Kyk (t,T)dT'-I'1l'2! g(t-T)KYk(t',T)dT, 
o 0 

Dp(t) = Kp(t, t') It'=t. 

The greatest possible value of the random force P(t) (with the use of the 
three sigma rule) is equal to 

maxP(t) = mp(t) + 30"p(t). 

The mass m connected with the randomly moving foundation is shown 
in Fig. 5.11. For greater definiteness we shall assume that the motion of the 
foundation began at an instant to = O. 

y 

z 

Fig. 5.11. 

The equation of the motion of the mass m is of the form 

jj + 2ny + P6Y = 2nyo + P6yo . (5.132) 

The solution of the equation (5.132) at zero initial data is 

t 

1 J 2 Y = pm k(t - T )(2nyo + Poyo)dT, (5.133) 

o 
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where 

k(t - T) = e-n(t-'T) sinp(t - T). 

We consider the displacement Yo a non-stationary random function with 
known probability characteristics myO and KYo(t, tl). 

In order to obtain the probability characteristics of the solution we must 
know the probability characteristic of the random displacement derivative Yo 
and that of the product YoYo. The expressions for the probability character­
istics of the product of the random function by its derivative were obtained 
in Sect. 2.4 

(5.134) 

The probability characteristics of the solution of the equation (5.132) are 

t t, 

Ky = :~ I I k(t - T)k(h - Tl)KyodTdTl 

o 0 
t h 

2p~n II 8KyO + 7 k(t - T)k(tl - Td 8Tl dTciTl 

o 0 

t t, 

2np~ I I ) 8KyO + 7 k(t - T)k(tl - Tl a:;:- dTciTl 

o 0 
t t, 

4n2 II 82 K + p2 k(t-T)k(tl-Td8T8;~dTdTl. 
o 0 

(5.135) 

(5.136) 

As a result of solving the equation (5.132) we have obtained the proba­
bility characteristics of y at non-stationary kinematic excitation. 

Under the action of a stationary kinematic excitation both non-stationary 
and stationary vibrations are possible. The first can occur when the time of 
process is less than the time tn necessary for the practical attenuation of 
transients, while the second may take place when the time of the process by 
far exceeds the time tn. 

Let us consider the non-stationary vibrations of a system under the action 
of a stationary kinematic excitation (Fig. 5.12). There is a point mass m on 
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the end of the elastic element of a measuring instrument rigidly fixed to a 
foundation randomly displacing in a vertical direction. The vertical displace­
ment Yo is a stationary random function with known probability character­
istics 

myO = 0; 

K (T) = D e-'>jT1 Yo Yo 

(5.137) 

Before the instrument has been turned on the mass m cannot shift from 
the foundation because of the rigid tie A. At an instant t = to = 0 the tie 
A disappears and the mass begins moving. The position of the mass at an 
arbitrary instant t is shown in Fig. 5.12 by the dashed line. It is required to 
determine the standard deviation of a difference Yo - Yk at a given instant 
tk . The difference Yo - Y represents a random displacement of the mass m 
relative to the foundation. The equation of small vibrations of the mass is 

ii + 2ny + P6Y = P6Yo + 2nYo · (5.138) 

y 

J 
:< >-: A _ ....... ( )0 .-. ~ ~ m 

ex 

J 

z 
Fig. 5.12. 

In order to determine the correlation function of the solution we can use 
the expression (5 .136). In the considered case the correlation function KyO' 

entering underneath the sign of integrals (5.136) , takes the form 

(c = T - Td. 

The derivatives of Ky with respect to T and Tl are 
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The second derivative of KyO with respect to T and T1 is 

(PK 
----1'!!. = Doe-aiel [28(c) - 0]. 
8T8T1 yo 

Through transformations the expression for the correlation function of 
the solution takes the form 

t tl 

Ky = ~i / / k(t - T)k(t1 - Tl)e-alr-rll 

o 0 

x [pg + Bn208(T - Td - 4n20 2 ] dTdTl 

or 

4 2 2 t tl 

Ky(t, t1) = Dyo(Po ~ 4n 0 ) J J k(t - T)k(h - T1)e-alr-rll dTdTl 

o 0 
tl 

8Dyo n 2o J ( ) ( + p2 k h - T1 k t - TI)dTl. (5.139) 

o 

The variance is 

2 t 

BDYOn 0 Jk2 ( _ )d + 2 t T T. 
P 

(5.140) 

o 

In order to determine the standard deviation of the difference L1y = Yo -Y1 
we must find the correlation function K6.y(t, t 1 ) : 

K6.y(t, tt) = 111 [L1y(t)L1y(t1)] = 111 [Yo(t) - y(t)] [yo(td - y(td] 

= KyO (t, td + Ky(t, tl) - 1111 - 1112 , 

where 

Substituting the expression of the solution y(td (5.133), we find 
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(5.141) 

We may present the expectations entering under the sign of integrals as 

M [YO(t) :~~] = O~l M [yo (t)yO (rdl 

= 00 DYoe-exlt-TII = aDYoe-exlt-Tllsign(t - r1). 
r1 

Through transformations the expression for M1 takes the form 
t, 

M1 = D;o ! k(t1 - rd [P6 + 2nasign(t - r1)] e-exlt-TIldr1. 

o 

Carrying out similar transformations with M 2 , we obtain 

t 

M2 = D;o ! k(t - r) [P6 + 2nasign(t1 - r)] e-alt,-Tldr. 

o 

The variance of L1y at an instant tk is 
tr 

(5.142) 

(5.143) 

DLly(tk)=DyO +Dy(tk)-2 ~y ! k(tk-r) [p6+2na sign(tk-r)]e-altk-Tldr. 

o 

As tk > r, we have 
tk 

DLly(tk) = DyO +Dy(tk) - 2~yo (P6+2na) ! k(tk - r)e-altk-TI dr. (5.144) 

o 

The standard deviation of L1y is 

<7Lly(tk) = J DLly(tk). 
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v 0 

Fig. 5.13. 

Let us consider the stationary vibrations of a system with one degree of 
freedom at a stationary kinematic excitation. Figure 5.13 a shows a trailer 
travelling along a road with random irregularities at a constant speed v. At 
the steady-state conditions of the motion the action of the road on the trailer 
can be regarded as a random stationary process. Let us assume that the 
point 0 of the trailers attachment to a motor vehicle has practically no verti­
cal displacements. It is required to determine the probability characteristics 
of the stationary vibrations of the trailer (of its angular vibrations about 
the point 0). In order to solve the problem, we must know the influence of 
the road on the trailer at different travel speeds, i.e. we need to know the 
spectrum of perturbations coming from the road, which depends on the road 
microprofile and the speed of travel. As an example a road section (the profile 
of a road section) with random irregularities is presented in Fig. 5.14. Many 
of roads sections have irregularities with a wide range of shape and length. 
The sequence of peaks and valleys of the road profile is random, therefore 
the magnitude and duration of the action of force impulses during the mo­
tion of a wheel when it passes these irregularities are random. To analyze 
the random vibrations of a motor vehicle during its movement along a road 
with random irregularities we must find out the dependence of the function 
h on time. To do this, it is sufficient to divide the abscissa of the plot shown 
in Fig. 5.14 on the travel speed v. As a result, we obtain the realization of 
the random function h in time. If we then divide the coordinate x by the 

h(x) 

x 

Fig. 5.14. 
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unit speed (va = 1 m/sec), the values of the road profile function h(x) will 
coincide with the values of the action function h(t). With all other things 
being equal, the magnitudes and alternations of the force impulses acting on 
the motor vehicle during its movement along a certain section of the road at 
a constant speed, do not depend on when the vehicle traverses this section, 
hence, the action of the latter on the road will be the same at any instant of 
time, i.e. it will represent a stationary process. 

The statistical processing of the road microprofiles measurement results 
allows us to obtain the probability characteristics of the random stationary 
function h(t), i.e. mh and Kh(T) and, what is especially important, the spec­
tral density Sh (w). We cannot obtain the probability characteristics of the 
roads action on the motor vehicle true for all types of roads, therefore the 
latter are conventionally divided into a number of classes according to the 
root-mean-square height of their irregularities. More detailed information on 
statistical characteristics of the roads and the methods of obtaining them 
will be found in the special literature on the subject. In particular, the cor­
relation functions of the action of roads on the motor vehicle Kh(T) can be 
approximated by the following function 

(5.145) 

where a, /3 are parameters depending on the road type and on the travel 
speed. We may present the parameters a and ,8 as those bearing an explicit 
relationship to the travel speed v, m/sec: 

where a1, /31 are the values of parameters at the unit travel speed that only 
depend on the type of a road. 

The spectral density of the roads action on the motor vehicle is determined 
from the relation (for the assumed function Kh(T)) 

or with due account taken of the dependence of the factors a and /3 on the 
travel speed of the motor vehicle v : 

S 4Dhva1(v2'Y1+w2) 
h ( w) - --:--:--;,,.---'-:::----;:----'--:-::-

- 7r [v4 'Yf + 2V2'Y2W2 + w4 ]' 
(5.146) 

where 1'1 = ai + /3r; 1'2 = af - /3r. 
The following correlation function describing the action of a derno­

podzolic soil country road on the motor vehicle in dry weather (at v 
= 1 m/sec) has been obtained by way of processing the results of experi­
mental investigations 



www.manaraa.com

168 5. Random Vibrations of Systems with One Degree of Freedom 

Kh(T) = 61.40e - 006271rl cosO.196T. 

The spectral density corresponding to the function K h ( T) and depending 
on the motor vehicles travel speed is 

w = 61.40 + . S [ 0.0627V 0.0627V] 
h( ) 0.0039v2 + (w + 0.196v)2 0.0039v2 + (w - O.196v)2 

(5.147) 

The plot of Sh(W) versus w at v = 1 m/sec is presented in Fig. 5.15. 
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Fig. 5.15. 

We can transform the expression for Sh(W) (5.147) to the form 

S ( ) _(iw)2 + 4.28· 1O-2v2 
h W = 7.8v 2' 

l(iw)2 + O.125viw + 4.28v2 . 10-2 1 
(5.148) 

Neglecting the mass of the chassis, we may consider the trailer as a system 
with one degree of freedom. The equation of the small angular vibrations of 
the trailer about the point 0 is (Fig. 5.13 a, b) 

.. . 2 21 h 
tp + 2ntp + Potp = POTh + 2nT ' (5.149) 

where 2n = OiP !Jo; P5 = cl2 !Jo. 
In the frequency area we obtain 

1 
[(iw)2 + 2niw + P6] tp(iw) = T(p~ + 2n(iw))H(iw) . 
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Therefore, the frequency function for the equation (5.149) is equal to 

2 
( . ) Po + 2niw 

W 2W = . 
l((iw)2 + 2niw + p~) (5.150) 

And so, the spectral density of a solution is 

PO+ mw 
1 

2 2 · 12 
S<p(W) = l [(iW)2 + 2niw + P6l Sh(W). (5.151) 

Substituting the expression for 

S W _ 7.8v [b 1(iw)4 + b2(iw)2 + b3] 

<p( ) - F l(iW)4 + 0.1 (iW)3 + 0.2 (iwF + a3(iw) + 0.412' 

where 

b2 = -(p6 + 2n2 ·4.3· 1O- 2v 2 ); b3 = 4.3· 1O-2v2p~ ; b1 = 4n2 ; 

0.1 = (0.125v + 2n); 0.2 = 2n· 0.125v + 4.3· 1O-2v2 + P~; 

0.3 = P6 . 0.125v + 2n· 4.3 · 1O- 2v; 0.4 = 4.3· 1O-2p6v2 

The plot of spectral density S<p variation against w is presented in Fig. 5.16 
at v = 20 m/sec, n = 0.3. 
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Fig. 5.16. 

The variance of the angular deflection is 

00 

D<p = ! S<p(w)clw = D<p(Po, n , v). (5.152) 

00 
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The values of integrals of the form (5.152) are given in Appendix 2. Using 
the Appendix 2 (D<p = J4 ), we find 

aOb3 
-aoaIb2 + --(aOa3 - aIa2) 

D<p = 27r ( 2 a42 ) . 
2ao aoa3 + al a4 - al a2a3 

The expression obtained for the variance depending on the parameters of 
the system and the travel speed enables us to investigate their influence on the 
variance of an angular deflection. The plot of angle <p root-mean-square value 
variation as a function of vat is shown in Fig. 5.17 a. The plot of a<p variation 
as a function of the viscous resistance force coefficient n at v = 10 m/sec is 
shown in Fig. 5.17 b. To make an analysis of the trailers suspension we must 
know the force acting on it during the travel of the trailer along a road with 
random irregularities. For the considered simplified model this force is equal 
to 

N = c(h - <pi) + a(h - cpi) = micp. (5.153) 

The spectral density of the force N (the relations (5.153) and (2.101)) are 

(5.154) 

where 

WI W 2 = 1 C(iw)2 + a(iw)3 12 
1 ()I [(iw)2 + 2niw + p~l 

As the expectation is constant at a stationary process, the expectation of 
the random function h derivative is zero and consequently the expectation of 
the angle <p is constant and equal to 

(mN = 0) . 
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The variance of the force N is 

00 

DN = ! SN(W) dw. 
-00 

Stresses occurring in the elastic suspension, are proportional to the force 
N, i.e. a = kN. 

With the knowledge of the probability characteristics mN and DN of the 
force N we can determine the probability characteristics of the stress a : 
mer = 0, aer = k2aN. 

Expression (5.154) with due account of (5.150) can be transformed to the 
form that is convenient for integration 

12.5v [( _iw)6 + 4.3· 1O-2v2 (iw)4] 
SN (w) = 2' 

l(iw)4 + al (iw)3 + a2 (iw)2 + a3 (iw) + a41 

Figure 5.18 a, b shows the plots of variation ofthe root-mean-square values 
aN as a function of the trailer motion velocity v at n = 0.3 (Fig. 5.18 a) and 
of the coefficient n at v = 10 mjsec (Fig. 5.18 b). 
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5.4 The Problem of Overshoots at Random Vibrations 

n 

When solving applied problems, we often have to determine the probability 
that a random function will overshoot the given level. A motor vehicle travel 
along a road with random irregularities is a case in point. The problem of 
determining the probability of a break-down in a suspension has become a 
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v 
~--~r-------------------------~ ~ 

Fig. 5.19. 

matter of practical interest. Any break-down of this kind involves large impact 
loads, which is undesirable. If we consider the relative vertical displacement 
of the suspension Yn to be a random function, the problem of the probability 
of such a break-down is equivalent to that of the probability of exceedance 
Yn(t) ~ YnO, where YnO is a free motion of the suspension (Fig. 5.19). This 
problem represents a special case of the general problem of overshoots. At 
the stationary vibrations of a motor vehicle we can obtain a relationship 
connecting the spectral density SYn (w) of the relative displacement Yn (t) 
with the spectral density of the road action Sh(W) : 

(5.155) 

where IWYn I is the transfer function modulus relating the input h(t) with the 
relative displacement of the suspension. 

Considering that there is a normal distribution for Yn, we can find the 
expectation mYn and the standard deviation (TYn' 

Knowing the parameters of this normal distribution, we determine the 
probability that the relative displacement Yn will exceed the value Yno : 

00 

P(Yn(t) ~ Yno) = vk J exp { - t;} dt = <1'(00) - <1'(tr), (5.156) 

tl 

Y -m where tl = no Yn . 
(TYn 

Example 5.5. Let us consider a simplified model (Fig. 5.19) ignoring the 
displacement of the motor vehicles body in comparison with the displace­
ments of the suspension. In this case, we may consider the vertical displace­
ment of the suspension separately, which will lead us to a system with one 
degree of freedom (the design scheme is shown in Fig. 5.19). At the designing 
stage, the problem of the exceedance of the suspensions structural dynamic 
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motion Yno is traditionally considered without regard for the influence of 
the motion limiting device on the vibrations of the suspension. The dynamic 
motion Yno is chosen depending upon the permissible probability of a break­
down in the suspension at a design travel speed in the given road conditions. 
Let us determine the probabilities of Yn exceeding the value Yno as a function 
of the speed of the motor vehicle travelling along a Belgian pave road. 

The numerical values of the system parameters are: 

m = 3 kg; c = 300 N/cm; a= 1.5 N sec/cm; 

n = 0.5 l/sec; p =/£ = f[{ = 10 l/sec; Yno = 8 cm. 

The equation of the motion of the mass m was presented in Sect. 5.3 and 
is of the form (the equation (5.138), where Yo should be replaced with h) 

(5.157) 

where 2n = aim; P5 = elm. 
Let us assume that the probability characteristics of the road irregularities 

are 

mh = 0; Kh(T) = 20e-O,05I r l cm2 ; 

( O.lv ) 2 
Sh = 20 2 2' cm . sec, 

0.0025v +w 

(5.158) 

where v is measured in m/sec. 
The variance is 

00 2 

D = 2v / I 2niw + P5 I dw 
Yn (iw)2 + 2niw + P5 liw + 0.05v1 2 

(5.159) 

-00 

or 

/

00 (-4n2(iw)2 + P6) dw 
Dy = 2v 2' 

n l(iw)3 + (2n + 0.05v)(iw)2 + (P5 + O.lnv)iw + O.05vP51 
-00 

Taking the value of the integral J3 from Appendix 2, we obtain 

[4 2 (2n + O.05V)P6] 
V7l' n + 2 

D =. O.05vPo 
Yn [-O.05vP5 + (2n + O.05v)(P5 + O.lnv)]· 

(5.160) 

Figure 5.20 shows the plot of ay .. (at n = O.05po) variation as a function 
of travel speed of a motor vehicle and the probability P of Yn exceedance the 
value Yno as a function of motor vehicles travel speed is presented in Fig. 5.21. 
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Fig. 5.20. 

For example, at a travel speed of 30 km/h (8.3 m/sec) the probability that 
dynamic motion of a suspension will be exceeded equals p = 0.02 . This prob­
ability is the probability of occurrence of the limit state (the suspensions 
"break-down"), which we cannot consider a mass event, i.e. such probability 
does not allow us to judge the quality of a structure. But if we compare two 
structures, the optimum one will be that whose "break-down" probability is 
lower. 

The properly designed normal conditions ought not to result in "break­
downs" or rather the "break-down" probability should be a very small quan­
tity depending on specific operation conditions and structure reliability re­
quirements. The random vibrations of the suspension cause random stresses 
in its elastic elements, governing the structures life. Random stresses varying 
in time lead to the continuous accumulation of fatigue damage. Therefore, to 
make an estimation of life we must know at least the average number of over­
shooting the given level of stresses, for example, the fatigue strength, during 
a known period of time tk' With linear characteristic of elastic elements of 

pr-----,------r-----,------~--~~ 

0.04 f-----+------+-----+--:,,,c---+-----1 

0.02 1-----+------i7"=----+-----+-----l 

4 8 12 16 v, mls 

Fig. 5.21. 
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the suspension the stresses are proportional to its relative displacement, i.e. 
the overshooting of the given stress level is equivalent to the overshooting of 
the given relative suspension displacement, for example Ynl in Fig. 5.22. 

y (f) 

t 

Fig. 5.22. 

Let us consider a differentiable random process with the duration tk 
(Fig. 5.23). Such realization has a finite number of maxima and minima with 
various values xmax(t) and Xmin(t) on a finite interval of time. The plot of 
the variation of a random function X(t) can more than once intersect the 
fixed level Xo both from the bottom upwards (with a positive derivative), 
and from the top down (with a negative by derivative) . The first intersection 
(the function X (t) reaches the given level for the first time) occurs at an in­
stant tl' If the random function X(t) intersects the level Xo from the bottom 
upwards, it is usual to call this a positive overshoot and if the intersection 
has a top-down trends this is generally referred to as a negative overshoot . 

Let us determine the average number of the intersections of a random 
process X(t) with a given curve a(t) (See Fig. 5.23). A special case of this 
problem is the overshooting problem, conditioned by 

a(t) = Xo = const. 

t 

Fig. 5.23. 
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f(f) 

Fig. 5.24. 

Henceforth we shall consider a(t) as a continuous single-valued function of 
t; the random function X(t) as a differentiable one; and the joint probability 
density f(x,x) for the function X(t) and its first derivative X(t) as a known 
probability. Let us show that the number of zeros for some function f(t) on 
an interval (to, tk) (Fig. 5.24) is determined by the formula 

tk 

n = / If(t)1 8 [f(t)] dt. (5.161) 

to 

Let us change the variable, setting f(t) = z. 
Then we can transform expression (5.161) to the form (as dz = fdt): 

Z2 

/ 8(z) dz o :::; f(t) < 00; 

Zl 
n= 

Z2 
(5.162) 

- / 8(z) dz - 00 < f(t) :::; 0, 

Zl 

where 

(5.163) 

Integrals (5.162), (5.163) are equal to zero at z =1= O. At Zi = 0 integral 
(5.162) is equal to 

Z;+C: 

/8(Z)dZ=1, 
Zi-E 

where Zi is a zero of the function f(t). 
Similarly, integral (5.163) at Zi = 0 is 

Zi+E Zi - E 

- / 8(z) dz = / 8(z) dz = 1. 

Zi -€ Zi+€ 
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Therefore the full number of zeros of the function f ( t) on the interval 
(to, tk) is equal to the sum of integrals, Le. 

n Zi+e n Zi+e 

n= ~ J 8(z)dz- 8 J 8(z)dz=n++n_, 
t.-lzi - e 1.- Zi-E 

where n+ is the number of zeros on the interval (to, tk) with a positive deriva­
tive (i(t) > 0) and n_ is the number of zeros on the interval (to, tk) with a 
negative derivative (i(t) < 0). Let us take advantage of the obtained results 
in order to determine the average number of the intersections of a random 
function x(t) with a nonrandom curve a(t). For this purpose, let us enter the 
function 

f(t) = c(t) - a(t). 

The intersections of the random function X(t) and the given curve a(t) 
on the interval (tI, t2) coincide with the zeros of the random function c(t), 
therefore 

tk 

n = J Ix - al8(x - a)dt. 
to 

The number of zeros n will be different for different realizations of the 
process, hence, n is a random variable randomly varying from one realization 
to another, therefore the average number of zeros is equal to the expectation 
of n, Le. 

N ~ M Inl ~ I [11 Ix - al o(x - a)f(x,x) dxdX] dt. (5.164) 

The joint probability density f (x, x) of the random function X and its first 
derivative x enters in expression (5.164). The methods of determining f(x, x) 
are presented in [31]. In the general case, determination of a joint probabil­
ity density (for non- stationary random processes) involves great difficulties 
because it requires a large body of information on the behavior of a random 
function. The problem of obtaining a joint probability density becomes easier 
to solve, if we know that the random process is normal. 

For a normal random process, the joint probability density (at an in­
stant t) is 

f(x, x) = 1 
21r0"",0":i:V1 - k"':i: 

{ 1 [(x-m",)2 
x exp - 2(1-k;:i:) O"~ 

2k"':i:(x - m",)(x-m:i:) _ (x - ~:i:)2]}, 
0"",0":i: O":i: 

(5.165) 

where k"':i: is a normalized cross-correlation function. 
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For a stationary process, the cross-correlation function kxx (if x and x are 
taken at the same instant) is equal to zero (see Sect. 3.3), therefore the joint 
probability density takes the form 

( .) 1 {I (x - m x )2 } { fx,x =2 .exp --2 2 exp 
~axax ax 

(x - ~x)2} = F(x)F(x). 
2ax 

(5.166) 

We can simplify the expressions for N (5.164) by integrating over x (using 
the property of the delta function), i.e. 

00 f f(x)8(x - a)dx = f(a). 
-00 

Some manipulations give us 

tk [ 00 1 
N = [ _£ Ix - al f(a, x)dx dt. 

Let us assume that ti are instants corresponding to an intersection of the 
random process by the curve aCt) on an interval (to, tk), i.e. X(ti) = aCt;,). As 
has been shown above, the total number of intersections n is equal to 

where 

tk 

n+ = f (x - a)8(x - a)dt (x> 0); 
to 

tk 

n_ = f (x - a)8{x - a)dt (x < 0). 

to 

The average number of intersections is: with a positive derivative 

tk [ 00 1 N+ = M [n+l = f f i{t)f{a, a + i)di dt; 
to 0 

with a negative derivative is 

tk [ 0 1 
N_ = M [n-l = - [ _£ i(t)f(a, a + i)di dt. 
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The total average number of intersections is 

Let us determine the average number of intersections of the given level, 
if a(t) = const = Xo (see Fig. 5.23). In this case 

tk 

n+ = f i8(c - xo)dt (i > 0); 
to 

tk 

n_ = - f i8(c - xo)dt (i < 0). 
to 

The average number of intersections is 

tk [ 00 1 
N+ = f f if(xo, i)di dt; 

to 0 

tk [ 0 1 
N_ = [ -L if(xo,i)di dt. 

(5.167) 

If Xo = 0, then the average number of zeros of the process x(t) on the 
interval of time (to, tk) is 

N = N++N_ = f f if(xo, i)di dt-f f if(xo, i)di dt. (5.168) 
tk [ 00 1 tk [ 0 1 

to 0 to -00 

In order to obtain a numerical result from formula (5.168) we must know 
the probability density distribution law of the random function c(t) deriva­
tive. For stationary random processes the expression for N + and N _ become 
simpler (because the internal integrals in (5.168) do not depend on time): 

00 

N+ = (tk - to) f if(ao, i)di; 

o 
o 

N_ = -(tk - to) f if(ao,i)di. 

-00 

(5.169) 

Expressions (5.169) allow us to determine the average number of inter­
sections of the given level and the random stationary function x(t) in a unit 
of time: 
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00 0 

N- N++N_ / '/( ')d' /.( ')d' = = c Xo, c c - c Xo, c C. 
tk - to 

(5.170) 

o -00 
Let us determine the average number of intersections of a normal station­

ary process x(t) with a horizontal straight line xo = const, using relations 
(5.169) and joint distribution law (5.165). In this case kxx = 0, therefore from 
(5.167) we obtain 

N+ = ~k - to) exp {_ (xo; ~x)2} /00 xexp {-2X22} dx; 
7rCTx CTx CTx CTx 

o 
o 

N_ = ~k - to) exp {_ (xo; ~x)2} / xexp {_ x2
2 } dx. 

7rCTx CTx CTx 2CTx 

(5.171) 

-00 
It follows from (5.171) that N+ = N_, hence the total average number of 

intersections of the given level and the normal stationary process is N = 2N +. 
By calculations we obtain 

(5.172) 

Let us determine the average duration of the stay of the random function 
x(t) above the level xo [31]. The probability of this is 

00 
P{X > xo) = / I [x{t)] dx. 

ao 

Let us divide up an interval (tk, to) into n equal small intervals Lltt each 
of which is located near the instants tt. Let us consider the intervals Lltt so 
small that it is possible to neglect cases where the function (x - ao) reverses 
sign within them. Let us introduce a system of random variables Llt each 
of them being equal to the corresponding interval Lltt or 0 depending on 
whether the random function in this interval is more or less than xo. Then, 
the total time of the random function being above the given level Xo is 

n 

tao = LLl i . 

i=l 

The average time of the random function being above the given level Xo 
for a time (tk - to) is 

n 

Ta = Mltxol = LM[Ll i ]; 

i=l 
( MILI.I = LIt} f(X)dX)' (5.173) 
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In the limit at n -+ 00 we obtain from (5.173) 

tk 00 

Ta = J J f(x)dxdt. (5.174) 

to Xo 

Let us determine the average duration of an overshoot, dividing the ex­
pression (5.174) by the average number of positive overshoots N+, i.e. 

tk 00 J J f(x)dxdt 
Ta to Xo 

T. ~ N+ ~ ] [7 Xf(XO'X)dX] dt 

to 0 

(5.175) 

For a stationary random process the expressions for Ta and T a take the 
form: 

00 

Ta = (tk - to) J f(x)dx; 
Xo 

00 J f(x)dx 
Xo 

Ta = -00---"----

J xf(xo, x)dx 
o 

For a normal stationary random process 

Ta= (tk-tO) [l_<p(xo-mx )]; 
21TlTx lTx 

Ta = 1T~x exp {_ (xo - ~x)2} [1- <p (xo - m x )] . 
lTx 2lTx lTx 

(5.176) 

(5.177) 

(5.178) 

(5.179) 

Example 5.6. The correlation function of an angle cp (see Fig. 5.13) at 
the normal stationary vibrations of a trailer (m"" = 0) is 

It is required to determine the average number of exceedances by the 
angle cp of the allowable value ao = CPo = ±5° for 10 minutes and the average 
duration of an overshoot Ta. The numerical values of parameters are known: 
IT,,,, = 2°; a = 0.1 l/sec; {3 = 0.6 l/sec. 
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As 

2 d2 K'{J I 2 (2 2) 
a <i> = - dT2 7=0 = a'{J a + (3 , 

then using formula (5.172), we obtain 

N = 600 J a 2 + (32 exp {_ CP~2 } = 6000.61 . 0.043 ~ 5. 
7r 2a'{J 7r 

The average duration of the overshoot is 

7r { cp~ } [ (cpo)] T - exp - 1-4>-
a - J a 2 + (32 2a~ a'{J' 

By substituting numerical values, we determine 

7r 
Ta = 0.61523.104(1- 0.9948) ~ 0.7sec. 

5.5 Nonlinear Random Vibrations 

Nonlinear mechanical systems loaded with random forces are extensively 
practiced in mechanical engineering and, among other things, include nu­
merous shock-absorption and damping devices for machines, instruments and 
structures; nonlinear control systems; and nonlinear problems of the dynamics 
of flying vehicles. Solving nonlinear problems, as a rule, involves great diffi­
culties. It is an open secret that we cannot obtain a solution to a general-type 
nonlinear equation in an analytical form. This is true even for the simplest 
second-order equation, not to mention the system of nonlinear equations of 
the motion of mechanical systems loaded with deterministic random forces. 

It was usual to believe not so long ago that any solution of nonlinear 
equations can only be deterministic at deterministic loads and random at 
random loads. Recent investigations of nonlinear dynamics carried out in 
years with the use of computers have made it possible to establish new 
physical phenomena that earlier seemed absolutely impossible in the field 
of traditional mechanics. It has been discovered that chaotic (unpredictable) 
motions are possible in a deterministic nonlinear system. This means that 
nonlinear systems can themselves, without external random actions, gener­
ate random processes. Moreover, approximated numerical methods of finding 
a solution, generally based on various simplifications and assumptions, are 
not only fraught with quantitative errors but can produce qualitatively dif­
ferent results as well. Therefore, the earlier developed approximate numerical 
methods of solving equations of nonlinear random vibrations (for example, 
the method of statistical linearization and that of moment functions) cannot 
always ensure the required accuracy of a solution. At small nonlinearities, 
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however, approximate numerical methods of solution can be effective. Meth­
ods using the theory of Markov processes and the method of statistical tests 
allow us to obtain exact numerical solut ions to nonlinear equations of statis­
tical dynamics without a linearization of initial equations. This paragraph is 
devoted to three methods of solving nonlinear equations of the first and sec­
ond order - the method of a statistical linearization, the method based on 
Markov processes and the method of statistical trials (Monte-Carlo method) 
that enjoy the greatest popularity in computational practice. 

5.5.1 The Method of Statistical Linearization 

Figure 5.25 a shows a one degree of freedom system, whose elastic characteris­
tic of the spring is a nonlinear function of a displacement x (Fig. 5.25 b). The 
resistance force F2 (x) (the friction force between the mass and the guide) 
has a nonlinear dependence on a motion velocity x. 

x 

x 

fi , 
/ , 

/ , 

a) 
b) 

Fig. 5.25. 

The equation of the forced oscillations of the mass m is 

mx + F(x, x) = fo(t) , 

where F(x, x) = FI (x) + F2(X). 

(5.180) 
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In each case there is an explicit specific dependence of functions FI and 
F2 respectively on x and x. For example, we may assume that for the conic 
spring, shown in Fig. 5.25, 

(5.181) 

up to a specific value of x (Fig. 5.25 b). 
At the quadratic resistance law we may present the function F2 as 

Let us consider the method of statistical linearization, which consists in 
the replacement of a nonlinear random function F(x, x) by a linear one, i.e. 

(5.182) 

where Xo and Xo are centered random functions; ai are arbitrary coefficients, 
determined from the condition of the minimum variance of a random function 

LlF = F(x,x) - F*. (5.183) 

The statistical linearization method is applicable to stationary nonlin­
ear vibrations that are possible only in cases, where an external force lo(t) 
is a stationary random function. In addition, we assume that the solution 
(x, x) has a normal distribution. Any stationary solution of a linear equation 
(for example, of equation (5.26)) with a stationary random function lo(t), 
having a normal distribution law, its would necessarily be normal because 
linear transformations do not change the normality of a distribution law. 
The solution of a linear equation at a normal law for a stationary random 
function lo(t) is not normal. It is possible to suppose, however, that at small 
nonlinearities it differs little from a normal one. 

If vibrations are stationary, the variance of the random function LlF takes 
the form 

00 

M [(LlF)2] = !! [F(x, x) - al - a2XO - a3xo]2 I(x, x)dx dx, (5.184) 
-00 

where I(x, x) is the joint probability density of x and x that does not depend 
on time for stationary random functions. 

Since I(x, x) is an unknown function in formula (5.184), we have to assume 
that the function I(x, x) is close to a two-dimensional normal distribution 
law of independent random functions, i.e. we may consider that 

(5.185) 

as for a stationary process m± = O. 
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Let us determine the arbitrary parameters al, a2 and a3 from the condi­
tions 

8M [(.dF)2] 
----=':c----=- = 0 

8ai 
(i=1,2,3). (5.186) 

By transforming we obtain the following values of coefficients from (5.186): 

00 00 

al= ! ! F(x,x)f(x,x)dxdx; 
-00 -00 

00 

a2 = ~! F(x,x)(x-mx)f(x, x)dxdx; 
ax 

(5.187) 
-00 

DC DC 

a3 = :~! ! F (x, x) x f (x, x) dx dX. 
-00 -00 

From (5.187) we determine the relationships 

(5.188) 

As a result of the averaging operation of the function F (x, x) we obtain 
the following linear equation in place of equation (5.180) 

.. a3 . a2 1 0 mf - al 
Xo + -xo + -Xo = - fo (t) + . 

m m m m 
(5.189) 

o 
As Xo and fa are centered random functions, by performing an operation 

of mathematical expectation on both parts of equation (5.189), we obtain 

(5.190) 

Finally we obtain the equation 

.. a3 . a2 1 0 

Xo + -Xo + -Xo = - fa (t) . 
m m m 

(5.191) 

The spectral densities of x and x will be: 

therefore the root-mean-square values of x and x are determined from the 
relations: 

DC 

a; = ! IW (iW)/2 Sfdw; (5.192) 

-00 
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00 

a~ = J IW (iw)1 2 w2 S f dw. (5.193) 

-00 

As a result, we obtain three equations (5.190), (5.192), (5.193) for the 
determination of three unknowns m x, a x and a x as a function of m f and a f· 

Example 5.7. It is required to determine the average number of ex­
ceedances N of a level ao by the center of gravity of a mass m for a given 
time tk' The characteristic of the spring is nonlinear. Let us consider the 
stationary random vibrations of the mass presented in Fig. 5.25 a, assuming 
that the characteristic of the spring FI (x) can be presented as (5.181), and 
the resistance force linearly depends on x. 

The stationary random force of the normal white noise type acts on the 
mass m i.e. 

mfo = const, Sfo = So· 

The equation of the motion of the mass m at a nonlinear resistance force 
takes the form 

2 3 1 0 (II. __ eml) . x + 2nx + Pox + px = -(fo +mfJ, ,.. 
m 

(5.194) 

At P = 0 equation (5.194) becomes linear, and its solution is a normal 
stationary process. At p =1= 0 the solution of equation (5.194) is not a normal 
process, but at small values of p we may assume that it differs little from 
a normal process, which enables us to use formulas (5.187) for the determi­
nation of coefficients aI, a2 and a3. Having evaluated integrals (5.187) we 
obtain 

_ (2 3 2). al - pmx mx + ax, (5.195) 

The linearized equation takes the form 

o 

.. 2' 2 () fo + m fo Xo + nxo + Po Xo + mx + a2 XO + al = . 
m 

(5.196) 

From (5.196) we obtain 

Using expression (5.195) for aI, we obtain the first equation relating mf 
to mx and ax: 

( 2 3 2) mfo 2 pmx mx + ax = -- - pomx' 
m 

(5.197) 

Having isolated the constant components from equation (5.196) we obtain 
the following equation with respect to the centered random functions 
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.. 2' ( 2 ) fo Xo + nxo + Po + a2 Xo = -. 
m 
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(5.198) 

In the considered case the spectral densities of x and :i; are equal to 

So 
Sx = 2; 

m21(iw)2 + 2niw + P6 + a21 
sow2 

Sj; = 2' 

m21(iw)2 + 2niw + P6 + a21 

therefore from (5.192) and (5.193) we obtain 

2 So 
(J" - . 

x - 4nm2 lP6 + 3J.L (m~ + (J"~)J' 
2 So 

(J".=--
x 4nm2 ' 

(5.199) 

Let us determine m x , (J"x and (J"j; from equations (5.197) and (5.199). In a 
particular case when mf = 0, we obtain 

1 
where (J"2 = is the variance of the solution at II. 

xo 2aP6 ,.. 
ILl = 4 is the non-dimensional small parameter. 

apo 

0; a = 
So 

Using formula (5.172), we determine the number of the level ao ex­
ceedances, (the number of these exceedances is half as large as the number 
of intersections of the level ao): 

Example 5.8. Figure 5.26 shows the outlines of an accelerometer repre­
senting a mass m elastically attached to springs with a linear characteristic 
(with a total rigidity c). A stationary excitation fo (t) setting up the vibra­
tions of the mass m is acting on the latter besides a slowly varying inertial 
force (that is to be measured by the accelerometer). In order to decrease the 
influence of a random disturbance on the indications of the accelerometer the 
mass m is placed in a cavity filled with a liquid. During the motion of the 
mass the resistance force is proportional to the square of a velocity x. As 
the nominal force acting on the mass m, varies in time very slowly, the mo­
tion velocity of the mass is low in nominal conditions and we can ignore the 
resistance force, therefore the later primarily influences random vibrations. 
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x 
m f(t) 

Fig. 5.26. 

Denoting by Llx the displacement of the mass m from its nominal position 
let us write the following expression for the resistance force 

We consider the random disturbance probability characteristics to be 
known: 

2aa2 
t S - fo m fo = cons ; fo - a2 + w2 ' 

It is required to determine the expectation mLlx, the standard deviation 
a Llx of the random displacement of the mass m, considering that stationary 
random vibrations occur. The equation of the motion of the mass m takes 
the form 

(5.201) 

Let us replace the nonlinear resistance force nlLlx2signLlx by a linear 
one: 

Let us determine al and a3 from formulas (5.187). By calculations we 
obtain 

mfo 
mLlx = --. 

c 

As a result, we obtain a linear equation in a centered random displacement 

o 

A·· + A· 2 A io 
LlXo a3 LlXO + PoLlXo = -. 

m 
(5.202) 

The variances Llxo and Llxo are respectively equal to: 
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.,fi. 20"J (a + 4nl 0" Ll:i:) 
D 2 ~. 

Llx = 0" Llx = 2 In (2 4nl 2) , 
PoV 20"Ll:i: Po + ffnO"Llx a + a 

(5.203) 

2 .,fiaO"J 

DLl:i: = O"Ll:i: = In (2 4nl 2)' 
V20"Ll:i: Po + ffnO"Llx a + a 

(5.204) 

We determine 0" Ll:i: from expression (5.204) and then 0" Llx from formula 
(5.203). 

The method of statistical linearization presented above produces an ap­
proximate solution to the simplest problems of the dynamics of nonlinear 
systems that is true at a number of limitations imposed on the input ac­
tion and the mechanical system. These limitations include: the smallness of 
nonlinear terms in the left-hand side of equation (5.180) and the supposition 
that the distribution law of the solution is close to normal. They substan­
tially reduce the information on a random process, allowing us to obtain 
only approximate values of the probability characteristics of a solution. The 
method of statistical linearization is not applied to cases where the nonlin­
earities cannot be considered small, as well as to analyses of non-stationary 
processes. 

In order to answer the question about the true distribution law of the 
solution of (5.180) type equation with the stationary right-hand side, we 
must use the theory of Markov processes. 

5.5.2 The Solution of the Nonlinear Equations with the use of 
~arkov Processes 

The method of statistical linearization, described in the previous item, allows 
us to reduce a nonlinear equation to a linear one. However, it is impossible 
to answer the question of how the accurate the obtained solution is. For this 
purpose, we must know the exact solution, which, for example, in a number 
of cases can be obtained, using the theory of Markov processes. 

Let us consider equation (5.194), which we may present as a system of 
two equations of the first order, putting :i: = Yl, X = Y2 (Let us confine 
ourselves to the case where mf = 0, and 10 is an excitation of the white noise 
type with Kf = 8015 (T)): 

. 2 2 3 10 Yl + nYl + PoY2 + J.tY2 = -j Y2 - Yl = O. 
m 

Kolmogorov's second equation (4.73) for a stationary process is 

01 01 2 3 01 80 0 21 
Yl- - 2n1 - 2nYl- - (POY2 + J.tY2)- - -- = O. 

OY2 0Yl OYI 2 oy~ 

(5.205) 

(5.206) 
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We may present equation (5.206) as 

8 [( 2 3) So 81 ] 
8Yl PoY2 + J.LY2 1 + 4nm2 8y2 

+ [-~+2n~] (Yd+~ 81 ) =0. 
8y2 8Yl 4nm2 8Yl 

(5.207) 

For the solution of equation (5.207) let us put 

i.e. we assume that Yl and Y2 are independent. 
In this case, the two-dimensional distribution law can be presented as a 

product of one- dimensional distribution laws (1.52). As a result, we obtain 
the equation 

8 { [( 2 3) So 8h]} 
8Yl iI PoY2 + J.LY2 h + 4nm2 8Y2 

( 8 8 ) [( So 8 iI )] + - 8Y2 + 2n 8Yl h ydl + 4nm2 8Yl = 0, (5.208) 

which becomes an identity if the functions hand h meet the equations 

dh + (p~ + J.LY~) 4nm2 h = OJ 
dY2 So 

diI 4nm2 
- + --YliI = O. 
dYl So 

(5.209) 

The solutions of equations (5.209) takes the form: 

iI = Cl exp { _ 4;:2 y~ } ; 

1~ = C2 exp { - 4;:2 P~Y~ } exp { -J.L 4::2 Yi} . 

(5.210) 

The arbitrary constants Cl and C2 are determined from the conditions 

00 00 

1) J h (yt}dYl = 1; 2) J h (Y2)dY2 = l. 
-00 -00 

From the first condition (5.211) we determine 

Cl = j2nm2. 
7rSo 

(5.211) 

(5.212) 
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It follows from the obtained expressions for hand 12 that the distribution 
law of Yl (first derivative of iJ) is normal, but the distribution law of Y2 is 
not normal according to the earlier mentioned supposition of the statistical 
linearization method. Only at J.L = 0 12 transforms to a normal law. 

Knowing the distribution laws of hand 12 we determine the variances 

00 

DYl = u~ = Cl / yih (Yl) dYl; (5.213) 

-00 

00 

DY2 = u; = C2 / Y~12 (Y2) dY2. (5.214) 

-00 

From expression (5.213) we obtain an expression for the variance u~ that 
exactly coincides with expression (5.199) obtained by the statisticallineariza­
tion method. Expression (5.208) enables us to determine u; numerically at 
any J.L as opposed to expression (5.200) that is true only for small values of 
J.L. 

Let us consider the algorithm of solving the example 5.8 with the use of 
the theory of Markov processes. The key feature of this example consists in 
a fact, that the random disturbance is not a white noise because the spectral 
density Sf depends on w. 

We may always present any process with the correlation function 

K f = uJe -alrl 

as a result of the passage of the white noise through a linear first order system 
of the form (Sect. 4.3) 

(5.215) 

where c (t) is a stationary random disturbance of the white noise type with 
mE=0,Ke=so8(r). 

From equation (5.215) we obtain the spectral density of the random func­
tion j, which coincides with the example 5.8: 

2au2 

S = f 
f a2 + w2 · 

Equation (5.215) should be considered together with equation (5.201) that 
can be presented as a system of two equations of the first order. As a result, 
we obtain a system of three equations: 

. 2 . 2 1 
Yl + nly1slgnYI + PoY2 = -Y3; 

m 

Y2 - Yl = 0; 

Y3 + aY3 = v'2;;.ufc (t), 

(5.216) 
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where Y! = Llx, Y2 = Llx, Y3 = fo. 

Set of equations (5.216) describes a three-dimensional Markov process. 
Considering that the stationary vibrations of a mass m occur, Kolmogorov's 
second equation for this case takes the form (special case of equation (4.88)): 

(5.217) 

If the coefficients ai linearly depend on Yi and provided that bij are con­
stants, we can obtain a solution of equations of (5.217) type in an analytical 
form. A method of solving equations of multidimensional Markov processes 
for the case where 

n 

ai = aOi + L D:ijYj; bij = const, 
j=l 

is presented in [35]. It will be recalled that ai and bij are coefficients of 
equation (5.217). 

5.5.3 The Method of Statistical Trials (Monte-Carlo Method) 

In Sects. 5.5.1 and 5.5.2 two methods of solving nonlinear equations of the 
first and second order were presented - the method of statistical linearization 
and the method using Markov processes. It has already been mentioned that 
the former is an approximate method and for this reason does not allow us to 
estimate the accuracy and certainty of its results.To secure ourselves against 
rough results we make a reservation to the effect that this method produces 
acceptable results at small nonlinearities, for example, at small J.L entering 
equation (5.194). We cannot, however, establish the interval of J.L variation, 
when it may be considered small, as well as the error of solution for this 
interval. 

Another limitation of the statistical linearization method is the necessity 
of postulating the unknown distribution laws of a solution. As we have no 
information on the distribution laws of the "output" before obtaining a solu­
tion, we cannot but introduce probability hypotheses, for example, consider 
that the distribution laws of the "output" are normal. It is impossible to 
substantiate the reliability of such assumption. The method of statistical lin­
earization enables us to determine a solutions accuracy only when we know 
the exact solution. But if we have it, any approximate solution becomes su­
perfluous. Therefore, the sphere of using this method in applied problems 
(when one bears the responsiblility for calculation results) is very limited. 
It is expedient, however, to be aware of its main idea - the replacement 
of nonlinear terms in an equation by linear ones, because this principle is 
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also applied when linearizing nonlinear equations of deterministic vibrations 
(generally those of the second order). The use of the statistical linearization 
method to solve systems of nonlinear equations, when we have to introduce 
multidimensional distribution laws into the algorithm of a solution, leads to 
practically insurmountable computation difficulties. 

The method of Markov processes allows us (theoretically) to obtain at 
any instant exact distribution laws for the components of the state vector of 
a nonlinear dynamic system whatever its dimensionality may be and exact 
values of vector-of-the-state components probability characteristics. Unfortu­
nately, this is far from being so in practice. In fact, we cannot produce the 
exact solution of a Kolmogorov's equation for a real nonlinear mechanical 
system with several degrees of freedom, especially when it comes to the ne­
cessity of taking into account real random disturbances (and not the white 
noise). Therefore, again we have at our disposal only approximate methods 
of solving Kolmogorov's equation that make us introduce simplifications and 
assumptions into the algorithm of a solution. And that brings about a dis­
crepancy between approximate and exact solutions the way it happens when 
we use the statistical linearization method. This discrepancy cannot be es­
timated because we have no exact solution. These disadvantages are absent 
from the method of statistical trials (Monte-Carlo method) based on the 
numerical solution of initial nonlinear equations without simplifying them. 

Let us dwell at length on the algorithm of solving nonlinear equations by 
this method and consider as an example an elementary system (see Fig. 5.27 a) 
with one input x and one output y. Having obtained n solutions for n re­
alizations of a random function x(t), we determine the expectation and the 
variance of a solution from the following formulas of mathematical statistics: 

1 n 

i'ity (t) = - :L Yi (t); 
n i=1 

Dy (t) = n ~ 1 t (Yi - my)2. 
i=l 

The accuracy of the obtained probability characteristics of a solution for 
mathematical expectation and variance depends on the number of solutions 
n and is estimated by standard deviations of estimations using the mathe­
matical statistics formulas: 

amy (t) = J ( Dy (t)) / n; 

ajj = .1_2_Dy (t). 
y V n-1 

(5.218) 

(5.219) 

A more comprehensive estimate of the accuracy of the results produced 
by a solution can be obtained on the basis of on evaluating the confidence 
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probabilities of the various deviations of ihy and by estimations from corre­
sponding true probability characteristics. Given that the distribution laws of 
the estimations are close to normal, these probabilities can be approximately 
estimated according to the following formulas: 

PI = P (imy - myi < cd = 24' ( C_I ); 
amll 

(5.220) 

P2 = P (Iby - Dy I < C2) = 24' ( a~lI) , (5.221) 

where PI, P2 are the confidence probabilities; CI, C2 are the given boundaries 

of the deviation of estimations; 4' (ci / amy) and 4' ( c2 / a by) are probability 
integrals. 

Using the relations (5.218) and (5.219), we obtain 

The figures given in Tables 5.2 and 5.3 represent the values of the number 
of trials (solutions) n necessary for producing results with the given relative 

deviations VI = CI / {E:, V2 = C2 / by and accuracy PI and P2 • 

The above tables show that when the requirements to the accuracy of 
the probability characteristics my (t) and by (t) become stricter, the neces­
sary number of solutions n increases considerably. In the past, this circum­
stance impeded the widespread adoption of the Monte-Carlo method in de­
sign practice, because then there were no high-speed computers. Today, the 
performance of large number of computation experiments offers no serious 
difficulties. 

Table 5.2. Number of trials for the determination 
of mathematical expectations at various values of 
VI· 

VI 0.2 0.15 0.10 0.05 om 
PI 
0.6 18 31 70 281 7000 

0.7 27 47 108 431 10800 

0.8 41 73 164 651 16400 

0.9 68 121 272 1090 27200 
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Table 5.3. Number of trials for the determination 
of variances at various V2. 

V2 0.2 0.15 0.10 0.05 0.01 

Pt 
0.6 37 63 141 563 14000 

0.7 55 95 217 863 21600 

0.8 83 147 239 1300 32800 

0.9 137 243 545 2180 54400 

If we need to obtain a distribution law of the output quantity Y (Fig. 5.27 a) 
at an instant tk, we break up the obtained numerical values Yi (tk) corre­
sponding to random functions Xi (Fig. 5.27 b) into division groups (intervals 
of Yv (t) values) and count the number kj of values Yi (tk), falling within the 
v-th interval. Then we divide this number by the total number of solutions 
and obtain the frequency Pv of the occurrence of the solution numerical value 
Yi (tk) corresponding to the given interval (Yv, Yv+d (Pv = ~) . As a result, 
we get the histogram (Fig. 5.28). Increasing the number of solutions n we can 
reduce the size of the intervals (Yv, Yv+l), and increase their number. This 
will lead to the histogram approaching some curve that can be regarded as 
the probability density of a function Y (tk) at an instant tk' When consider­
ing a mechanical system with a finite number of degrees of freedom and one 
random function at the "input", we can obtain one-dimensional distribution 
laws for generalized coordinates and their first derivatives at any instant. 

&§¥ 
~ p • 

tK t 

~ 
~ tK 

a) b) 

Fig. 5.27. 
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Fig. 5.28. 

The information on the distribution laws of the generalized coordinates and 
their velocities obtained by the method of statistical trials is sufficient for 
the solution of complicated applied problems when we do not need to know 
the multidimensional distribution laws of the mechanical system state vector 
components. 

The method of statistical trials can be applied both to nonlinear systems, 
where it is especially effective, and linear ones irrespective of the dimension­
ality of both. When using this method with respect to nonlinear systems, 
we should take into account all acting random disturbances in each math­
ematical realization, since the principle of superposition does not work for 
nonlinear systems. 
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6. Random Vibrations of Systems with Finite 
N umber of Degrees of Freedom 

6.1 Free Random Vibrations of Linear Systems 

As a rule, the presentation of a real mechanical system as a system with 
one degree of freedom is approximate. For example, the system shown in 
Fig. 6.1 usually considered that with one degree of freedom is a system with 
two degrees of freedom (if we neglect the inertia of the rod and examine the 
motion of the mass only in the plane of the drawing), as the real lumped 

. . . _. . tral axis that is 
y 

Fig. 6.1. 

-­~---
--

z 

Using the force method we obtain the following two equations of motion 
(Fig. 6.2): 

y = 811 (-my) + 812 ( -Jo<p)j 

'P = 821 (-my) + 822 ( -Jo<p) , 

where 

The system of equations (6.1) can be presented in a vector form as: 

LlMy+y = 0, 

(6.1) 

(6.2) 
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z 

Fig. 6.2. 

where 

Ll = [011 012] ., [m 0] [y] 021 022 M = 0 JO ; Y = '-P . 

The vector form of presentation substantially simplifies the study of os­
cillatory systems with many degrees of freedom because the equation (6.2) is 
also true for systems with any final number of degrees of freedom: 

(6.3) 

or 

(6.4) 

where 

For a computer solution of equation (6.4) it is necessary to present it as a 
system of two equations of the first order which can be done by introducing 
new unknown vectors Z1 = y, Z2 = y. As a result, we obtain a system 

or 

2;1 + A1z2 = 0; 

2;2 - Z1 = 0; 

Z+AZ = 0, 

where 

(6.5) 

(6.6) 

The vector Z has dimensionality 4 and is referred to as a system state 
vector. The first n (1,2, ... , n) components of the vector Z are derivatives of 
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generalized coordinates with respect to t, and the subsequent n components 
(n + 1, n + 2, ... , 2n) are generalized coordinates. 

The system of equations (6.5) ignores the forces of resistance. In order to 
take them into account (if we assume that the resistance forces are propor­
tional to the first derivatives of the generalized coordinates), it is necessary 
to introduce one more BZ term into the equation (6.3), where B is a matrix 
whose elements bij are coefficients of the friction forces. 

With due account of resistance forces the equation (6.3) becomes 

My+By+Cy = o. (6.7) 

If we include the friction forces in the equation (6.6), only the matrix A 
changes, namely 

Further on, we denote the elements of the matrix M-1B by bij . During 
random free vibrations the initial data at t = 0 represent random quantities, 
whose probability characteristics we consider to be known, i.e. we know their 
mathematical expectations mz;o and variances D ZiO ' In the more general case 
where the components of the vector Z at the initial instant of time correlate 
with one another, we know the correlation moments Kz;ozjo' The solution of 
the equation (6.6) takes the following vector form 

Z = K(t)C, (6.8) 

where K(t) is the fundamental matrix of solutions of the system of homoge­
neous equations and C is an arbitrary vector. 

When numerically solving the equation (6.6), we may choose such algo­
rithm of getting the columns of the matrix K(t) that at t = 0 makes the 
matrix K(O) equal to the identity matrix, namely, K(O) = E. In this case, the 
arbitrary vector C equals the initial values vector Zo, i.e. 

Z = K(t)Zo. (6.9) 

All previous mathematics and representation of the solution of the equa­
tion (6.6) in the form (6.9) hold true for deterministic initial data. Let us 
determine the mathematical expectations as well as the correlation and cross­
correlation functions of the components of the vector Z. 

The mathematical expectation of a vector Z is 

M [Z] = m z = K(t)mzo, (6.10) 

where m z is a vector whose components are the mathematical expectations 
of the components of the vector Z and mzo is a vector whose components are 
the values of m Zj • 
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The mathematical expectations of the components of the vector Z are 

2n 

m Zi = LkijmZOj. 
j=l 

(6.11) 

In order to determine the correlation and cross-correlation functions of 
the components of the vector of solutions let us present the solution (6.9) in 
a scalar form 

2n 

Zi(t) = Lkij(t)zzjO" 
j=l 

(6.12) 

Knowing the mathematical expectations m, we can obtain the expression 
for the centered random components of the solutions vector: 

2n 

Zi (t) = Zi (t) - m Zi (t) = L kijzjO ; 
j=l 

(6.13) 

For the special case of KZiOZkO = 0, we have 

2n 

KZiZk = Lkiv (t) kkv (t') Dzvo; 
v=l 
2n 

KZiZi = LkiV (t) kkv (t') Dzvo; (6.14) 
v=l 

2n 

DZi = L k'fv (t)Dzvo· 
v=l 

As a result, we have obtained all probability characteristics of the com­
ponents of the state vector of a linear system with a finite number of degrees 
of freedom at random free vibrations induced by random initial data. 

In the design we are most interested in the random dynamic stresses 
that arise in structure elements, for example, the normal stress arising in the 
section k of the rod (Fig. 6.2). Let us determine its probability characteristics 
(Fig. 6.2) 

(6.15) 

where Rl is the reaction in the hinge. 
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Using d'Alembert's principle, we get 

(6.16) 

where Ji , Mi are respectively the inertia force and the moment, 

From the equations (6.1) we determine: 

.. 822 + 812 y= -y -cp 
mLl mLl 

.. 821 811 
(6.17) 

cp = JoLl Y - JoLl cp. 

Performing transformations with due account of (6.16) and (6.17), we 
obtain 

where 

bi - _ (621 + 822h) It. 
- Wx (h + l2) Ll ' 

(6.18) 

In order to determine the greatest possible value of O"max that depends 
on two random functions y and cp we must known the joint distribution 
law f (y, cp, t). Considering the joint distribution law of y and <p a normal 
distribution law, we can determine the parameters of distribution law of the 
random function O"max, the latter being linearly dependent on the random 
functions y and cp (6.18). In this case, the O"max distribution will also be a 
normal one with the following parameters: 

mO"max (t) = b1my (t) + b2mcp (t); 

(0"0"maJ 2 = b~O"; (t) + b~O"; (t) + 2bI b2K ycp (t), 

where 

(6.19) 

(6.20) 

(6.21) 

The cross-correlation function (6.21) is a special case of (6.12) at n = 2 
(if the initial data are independent). 

Having determined normal distribution parameters for O"max, we find the 
greatest possible value of the normal stress O"max at each instant 

max (O"max (t)) = m smax (t) + 30" O"max (t) . (6.22) 
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6.2 Vibrations at Random Pulse Loading 

When solving applied problems we often have to consider the motion of a 
system induced by the action of a random impulse of force (or a system of 
forces). A case when a vehicle drives into a single asperity markedly differing 
in height from other road asperities is shown in Fig. 6.3. At a high speed 
of the vehicle horizontal motion the action of this asperity is equivalent to 
a single impulse of force, which results in a sharp change of total velocity 
vector v = VOil + liiz and the angular velocity w = 0. 

y 

Fig. 6.3. 

During the vehicles motion we consider that the displacement of the center 
of gravity (point 0) and the rotation of the vehicle as a rigid body occur in 
the plane of the drawing. 

In the general case, a wheel may collide with the asperity, resulting in 
an onset of spatial vibrations (if there were some vibrations in the plane of 
the drawing before the collision). The ultimate goal of the design may vary 
depending on the specific conditions of a problem and the designation of 
the structure. For example, in the design of the structure shown in Fig. 6.4 
the following two points may be of concern to its designers, provided that 
the structures pulse loading is J j: the greatest possible displacements of the 
masses from the vertical position and the greatest possible dynamic stresses 
arising in the structure. Let us consider each of them in succession. During 
the action of the pulse loads J i on the masses mi (Fig. 6.4) the latter obtain 
velocities equal to (at J i = Jiil ) 

J 
Xli (0) = _t (i = 1, 2, ... , k) 

mi 
(6.23) 

after the action of the impulse has terminated. 
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Fig. 6.4. 

f(~) f(J) 

a) b) 

Fig. 6.5. 

We assume that the distribution laws of J i are known (Fig. 6.5 or 6.6). 
Let us first consider the simplest case of J i directions being known, for 

example, that of Q = O. After the action termination of the impulses of forces 
has come to an end, masses obtain the following velocities (for example, at 
Ji = Jii1 ) 

(6.24) 
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a) b) 

Fig. 6.6. 

They can be considered the initial data of the systems subsequent free mo­
tion. (At pulse loading the displacements Xij become equal to zero after the 
termination of the impulse action) . In this case, the vector of the initial data 
takes the form 

i.e. the given problem can be considered a special case of the previous prob­
lem. Therefore the probability characteristics of the components of the vector 
Z are equal (at k = n) to 

n 

K Z, Zj = 2:: kij(t)kiv(t')KzkOZVO· 
k= l 

(6.25) 

(6.26) 

Example 6.1. Let us consider a system with two degrees of freedom 
ignoring resistance forces (Fig. 6.7). 

y 

Fig. 6 .7. 

J = J. 
12 

z 
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A random short-term impulse J (with known mjand D j ) has suddenly 
acted on a mass ml at t = o. After the termination of the impulse action the 
mass ml has obtained a random velocity YIO· 

It is required to determine the mathematical expectation and variance of 
the displacement of the mass mj at an arbitrary instant of time, i.e. to find 
myl (t) and DYl (t). Making use of the force method, we obtain the following 
equations of motion: 

or 

Yl = J u (-mlih - C1Yl) + 612 (-m2ih - C2Y2); 

Y2 = 621 (-mlih - C1Yl) + 622 (-m2ih - C2Y2) ; 

auiil + aI2ih + bUYl + bI2Y2 = 0; 

a2Iih + a22ih + b2IYI + b22Y2 = 0, 

where 

all = 6Uml; 

bI2 = 6I2 C2; 

b2I = 621 CI; 

a12 = 6l2m2; bu = 1 + JUCI; 

a2I = 621 m l; a22 = 622m 2; 

b22 = 1 + J22C2. 

(6.27) 

(6.28) 

The system of equations (6.28) can be reduced to a system of first-order 
equations, but in this particular case we can obtain the solution for the initial 
system right away. Assuming that 

YI = Al cospt; Y2 = A2 cospt 

or 

we obtain from the system (6.28) 

(bu - allP2) Al + (b12 - a12p2) A2 = 0; 

(b21 - a21P2) Al + (b22 - a22p2) A2 = O. 

(6.29) 

(6.30) 

(6.31) 

Having determined PI and P2 from (6.31), we find the following coefficients 
of distribution 

ki = A2I = b12 - a12PI . 
All bll - allP~ , 

k2 = A22 = _ bI2 - a12p~ 
AI2 bll - allP~ . 

(6.32) 
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As a result, we obtain the solution of the system (6.27) 

YI = Al COSPlt + BI sinplt + A2 COSP2t + B2 sinp2t; 

Y2 = Alkl COSPlt + Blkl sinplt + A2k2 COSP2t + B2k2 sinp2t . 
(6.33) 

As at t = 0 YI = Y2 = Y2 = 0, and YI = YlO then, having determined the 
arbitrary constants Ai, Bi we obtain 

(6.34) 

The mathematical expectation and variance of YI are equal to 

[ kl sin PIt k2 sinp2t ] 
my I (t) = PI (k2 - kl ) - P2 (k2 - kd m ylO ; 

D ()=[klsinPlt _ k2sin p2t]2 D . 
YI t PI (k2 - kd P2 (k2 - kl ) YIO 

(6.35) 

respectively. 
mylO and DylO entering the expressions (6.35) are related to the proba­

bility characteristics of the random impulse by the equation 

Assuming that the displacements Yi and their first two derivatives have 
normal distribution, we obtain the greatest possible deviation of the mass ml 

1 [ kl sinplt k2 sinp2t ] 
max(YI)=- (k k)- (k k) (mJ+30"J). ml PI 2 - I P2 2 - I 

Let us consider a case of pulse loading of a structure, where the direction 
of impulses J i is random (see Fig. 6.4), for example, with vectors J i being 
parallel to the plane XIX3 and having arbitrary direction (a i- 0). The impulse 
of force acting on a mass mi imparts it a velocity (at J i = J iXI i l + JiX2 b) 

. .. .. J i 
UiO = XlOll + X2012 = -, 

mi 
(i=l, 2, ... , k). (6.36) 

In the case of the vectors J i being arbitrary directed in the plane XIX2 we 
consider that the distribution laws of the modulus lJi I are known (see Fig. 6.5, 
6.6). The projections of J i on the axes Xl and X2 (JiXll J iX2 ) , which are 
related by an additional condition 

(6.37) 

will enter in the equations of motion. In this case we must know the distri­
bution law of the modulus of a normally distributed random quantity whose 
probability density obeys the law 
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Fig.6.S. 

where mJi and U Ji are the mathematical expectation and the standard de­
viation of the initial normal distribution law [30] for Ji . The plots of f (lJ.!) 
for a number of mJi values are given in Fig. 6.8. 

Considering that the components of the vector Z have normal distribu­
tions, we take advantage of the three sigma rule in order to determine their 
greatest possible values at any instant of time 

max (zdt)) = mJl + 3UJl (i = 1, 2, ... , 2n). (6.39) 

The first n relations (6.39) are the greatest possible velocities of the masses mj 
with subsequent (n + 1, n + 2, ... , 2n) relations being the greatest possible 
deflections of the masses from the state of equilibrium. In order to obtain 
the greatest possible accelerations of the masses mj (the overloads) from the 
equation (6.6) we determine (with due account of (6.9)) the derivative of the 
state vector 

Z = -AKZo. (6.40) 

The first n components of the vector Z are the accelerations (in this exam­
ple they represent the linear accelerations of the masses). The mathematical 
expectations and variances of the first n components of the vector Z ( at 
KZO,iZOk = 0, if i # k) have the following values: 

n 

mi:j = I: k;~)mzov 
v=l 

( mJv) 
mzov = mv ; 
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where kJ~) are the elements of the matrix K(l) = -AK. 
The greatest possible accelerations of the masses mj take the form 

max (Zj) = m Zi + 30"z,. (6.41 ) 

After the action of the impulses of forces has terminated, the motion of 
a system (see Fig. 6.4) with due account taken of viscous resistance forces is 
similar to that of the equation (6.7) or (if we go over to a system of first-order 
equations) the equation (6.6): 

Z+AZ = 0, (6.42) 

where 

The solution of the equation (6.42) is of the form 

Z = K (t) Zo, (K (0) = E) . 

At a pulse loading we have the following initial data: 

Z2 (0) = 0, (6.43) 

with the possibility of several components of the vector Zl (0) being equal 
to zero (if k < 11" where 11, is the number of degrees of freedom and k is the 
number of masses subjected to the action of impulses of forces). 

The impulses J i have random, coinciding directions parallel to the XlO X2 

plane (Fig. 6.4). Let us assume that J i are related by the equations 

(6.44) 

If, unlike the special case, considered above, each mass has two degrees of 
freedom (displacements along the axes Xl and X2), the system of equations 
(6.42) has the dimensionality of 411" because in this case the masses are al­
lowed to move along the two axes Xl and X2. After the action of impulses has 
terminated each mass begins moving with a velocity (initial conditions) of 

(6.45) 

where J lX" J lx2 are the projections of the vector J 1 on the axes Xl and X2 

(Fig. 6.9): 
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Fig. 6.9. 

(6.46) 

where a is a random angle. The first 2n components of the initial condi­

tions vector Xo are known (XlOj , X20j ), (j = 1, 2, ... , n) with the other 

2n components of a vector Z being equal to zero. 
We may present the components of the vector Z with due account taken 

of (6.45) and (6.46) as 

(6.47) 

(The explicit form of coefficients ail, ai2 is given below) . 
If we use the relations (6.47) to obtain the probability characteristics of 

the solution of equations of motion, we need information on the random 
angle a. To be more specific, we must know the distribution law of the angle 
a . For example, if we have found out that this angle follows the uniform 
distribution law on the interval 0 ::; a ::; 27r, we can determine all probability 
characteristics of Zi. This version of the solution, however, gives no answer to 
the question about the worst action of the impulses J i on a system and that 
is precisely what designers want to know. 

Let us consider a method of solving the equation (6.42) that involves the 
determination of the maximum values of the components of the state-of-the­
system vector at any instant of time and their probability characteristics. 
The method presented below demands that we should know the distribution 
law of the random angle a, which makes it much easier for us to acquire 
statistical information on the input. In other words, our knowledge of the 
distribution law of the modulus of the impulse force vector (6.38) is quite 
sufficient here. 

Let us consider the solution of the equation (6.42) implying a generalized 
solution to the considered case where the masses mj have two degrees of 
freedom: 

Z = K (t) Zo, Z ( . (1) . (1) .(n) . (n) )T o = X lO , X 20 , ... , XlO , X 20 , 0 ... 0 
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With due account of (6.45) we may set the vector Zo in writing as 

Zo = f3J, 

where 

f3l 0 ... 0 ...... 
ml 

f3l 0 0 ... ... 0 
ml 

0 ... 0 

f3= 
0 ... 0 

f3n 0 ... 0 0 ... 0 
mn 

f3n 0 0 - ... 0 
mn 

0 0 0 
0 ... ... 0 

J = (J1X1 ' J Ix2 , J Ix" J Ix2 , J Ix1 , J Ix2 , o ... 0) T . 

Therefore 

Z = K (t) f3J. 

From (6.49) we obtain in a scalar form 

Zi = ail (t) J1Xl + ai2 (t) J1X2, 

where 

Let us present (6.50) as a scalar product 

Zi = (ai . J 1) , 

where 

The projections of the pulse J 1 meet the condition 

which we may present as 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

(6.52) 
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(6.53) 

Let us determine expressions for the maximum values of the components 
(6.51) with an additional constraint (6.53), using a Lagrangian multiplier 

J = (a; . J 1 ) - >. [(eJ . J) - 1] = max, 

where>. is the Lagrangian multiplier. 
The functional J maximum is determined from the condition 

or 

a; = >.eJl · 

Let us multiply (6.56) by the matrix e-l : 

e-la; = >.J l . 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

Scalarly multiplying the left- and right-hand sides of the equations (6.56) and 
(6.57), we obtain (with due account of the relationship (6.53)) 

(6.58) 

wherefrom we determine the multiplier 

(6.59) 

Knowing the Lagrangian multiplier, we determine the vector from the rela­
tionship (6.57) 

e-la; e-la; 
Jl:!: = ->.- = --,:==== 

vee-la; . ai) 
(6.60) 

The maximum value of the solution vector component Zi is 

(6.61) 

or 

(6.62) 

The expression (6.62) for max Zi allows us to determine the probability 
characteristics of mzi and (j zi which are the maximum values of the compo­
nents of the state-of-the-system vector: 
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max (mzi) = J at! (t) + at2 (t) mJi ; 

max (azi) = Jar! (t) + at2 (t) aJi; 

where 

o 

<p (mJi) __ 1 exp { m}i } . 
a J i -,j27r 2a}i' 

-2 2 2 -2 
a J, = a J, + mJ, - mJ, . 

(m J,' a J, are the parameters of a normal distribution law). 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

Let us obtain the distribution laws of the maximum values of the compo­
nents max (Zi) that linearly depend on the random modulus of the impulse­
of-force vector (the relationship (6.62)). According to the general theory of 
determining the distribution laws of the monotonously varied functions of 
random arguments, we have 

(6.67) 

where 

Zim = max (Zi). 

From a condition that is similar to the three sigma rule we determine the 
greatest possible value of the maximum component of the solution vector Zi 

(for example, the displacements of the mass mj): 

or 

P (0 < Zim < zim) = 0.99 

. 
Zimax 

/ Ii! (Zim' t) dZim = 0.99. 

o 

(6.68) 

(6.69) 

We determine zim for any fixed instant of time from (6.69). The presented 
method enables us to obtain the greatest possible values of each component 
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of a system state vector, for example, the maximum displacement of the k-th 
mass max (Xjk) or its maximum velocities max (Xik). With a knowledge ofthe 
distribution law of the maximum displacements of the masses of a system, we 
can determine the probability that the maximum displacement of the i-th 
mass meets the condition (6.62). We deal with similar problems at the design 
of the suspension system of vehicles (Fig. 6.3) in cases where a collision with 
a unit asperity occurs. This probability takes the form 

L1 

PI (0 < Zim < ..1) = ! lil (Zim, t) dzim , 

o 
(Yim = Yo). (6.70) 

For a motor vehicle (see Fig. 6.3) the expression (6.70) that permits us to 
determine Yo (Yo is the vertical displacement of a suspension), holds true only 
for the interval of time tk = ljvo (up to the moment when the rear wheels 
drive into an asperity). 

The expression obtained for the above probability depends on time t. We 
can get the instant t, when PI reaches the maximum value, from the condition 

dPI = 0 
dt . (6.71) 

It is possible to obtain the relationship PI (t) for a number of discrete 
values, and then, using spline functions, get an analytical expression for Pl (t). 

A similar method also allows us to determine the maximum values of the 
accelerations (the first n components of the vector Z) 

(6.72) 

By analogy with (6.67) we obtain the distribution law of the maximum values 
of the accelerations of the systems masses 

(6.73) 

The greatest possible value of the acceleration (max (max Zi) = max zt) 
is determined from the condition 

.. 
%imax ! 1i2 (Zim, t) d (Zim) = 0.99. 

o 
(6.74) 

Knowing the distribution law of the accelerations, we can determine the prob­
ability that the overloads acting on the lumped masses of a system, will not 
go beyond the given interval of values: 
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Ziii 

P2 (0 < Zim < Ziii) = J fi2 (Zim, t) d (Zim), 

o 

(6.75) 

where Ziii is the upper value of allowable accelerations. We find the moment 
of time at which P2 reaches the maximum value, from the following condition 

dP2 
-=0. 
dt 

As an illustration of the presented method consider a system with two 
degrees of freedom (Fig. 6.10) that is subjected to the action of a random, 
arbitrary directed impulse in the plane X1X2 (at the point k). Using the force 
method, we obtain the following equations of small vibrations of a system 
(ignoring resistance forces): 

Y2 = 011 (-MX2) + 012 (-Jo'l;); 

r.p = 021 (-MX2) + 022 (-Jo'l;). 
(6.76) 

In this example there is no need to pass to a system of first order equations as 
the solution can be obtained in an analytical form. We determine the initial 
velocities of a system after the termination of the impulse action from the 
following relationship 

JX2 = - MX20; 

JX1 H = -Jo<Po. 

Fig. 6.10. 

,0 

I 
I 
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The solution of the system (6.76) is of the form 

X2 = Cl sinplt + C2 COSPlt + C3 sinp2t + C4 COSP2tj 

cP = Clal SinPlt + C2al COSPlt + C3a2 sinp2t + C4a2 COSp2 t • 

At t = 0 X2 = cP = 0, therefore C2 = C4 = O. The arbitrary constants are 

As a result we obtain the following expressions: 

X2 = a1JX1 + a2JX2j 

cp = b1JX1 + b2 J X2 , 

where 

al = 'Yll sinp1t - 'Y21 sinp2t j 

a2 = 'Y22 sinP2 t - 'Y12 sinpltj 

b1 = 'YUal sinplt - 'Y21a2 sinp2tj 

b2 = 'Y22 sinp2t - 'Y12a l sinpltj 

( a 2 _ .i..) 
I Jo 

Let us obtain expressions for the maximum value of the displacement X2 

and X2. In accordance with the previously given algorithm, we consider a 
functional 

J = (a· J) - >. [(OJ· J) - 1] , 

where 

2 

(a· J) = )' aiJxp 
.;....J 

i=l 
o 1 1 . 

IJI2 
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From the condition (6.55) we obtain an equation 

a =).C· J. 

Using the condition (6.53), we obtain 

or 

where 

Cll = 'Y?1 + 'Y?2; C22 = 'Y~1 + 'Y~2; 
C12 = - (')'11 1'21 + 1'221'12) . 

The maximum value of X2 (6.55) is 

max (X2) =). = IJI Ja~ + a~ = 

= IJI Cll sin2 PIt + C12 sin PIt sinP2t + C22 sin2 P2t. 

According to (6.67) we obtain the distribution law for max (X2) and max (X2) 

f (X2m, t) aJi~ b [exp {- (X2~~~J)2} +exp {_ (X2~~~J)2}]. 
(6.77) 

where 

b = Ja~ + a~. 
Carrying out similar calculations for X2 

we determine max X2 and the corresponding distribution law 

f (X2m, t) = vk [exp { 
ao 211" b1 
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where 

b1 = Ja~ + a~; X2m = max (X2); X2m = max(x2). 

Distribution laws continuously vary as time changes, and at discrete in­
stants the distribution laws of X2m, X2m are similar to those of the random 
impulse modulus (see Fig. 6.8). 

We find the greatest possible displacement max (X2m) and the velocity 
max (X2m) from the conditions 

x;Tn, 

PX2 = / JX 2 (X2m' t) dX2m = 0.99; 
o . 
X2~ 

PX2 = / JX2 (X2m' t) dX2m = 0.99, 
o 

where 

(6.79) 

(6.80) 

For a number of specific values of time t we can determine xim and xim from 
(6.79) and (6.80) only numerically. 

The given method of analyzing mechanical systems under the action of 
random arbitrary directed impulses allows us to determine the greatest pos­
sible dynamic effects in a system and minimize them through a choice of its 
parameters. 

6.3 Non-Stationary Random Vibrations of Linear 
Systems 

As a rule, systems with one degree of freedom enable us to obtain the solution 
of equations of motion in an analytical form, which essentially simplifies the 
subsequent determination of the probability characteristics of the output at 
known probability characteristics of the input. In a number of cases we can 
obtain probability characteristics of the output for equations with constant 
coefficients in an analytical form convenient for making an analysis. For sys­
tems with a finite number of degrees of freedom, e.g. for linear systems with 
constant parameters, the solution can basically be obtained in an analytical 
form, but this gives us no substantial benefits in comparison with a numeri­
cal solution because of the cumbersome formulas. For this reason numerical 
methods of random vibrations analysis are usually preferred. 

To introduce the reader to the section of non-stationary random vibrations 
of linear systems we shall examine a system with three degrees of freedom 
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y 

Fig. 6.11. 

a) 

M 

b) 

M(1) f 
3 

(Fig. 6.11 a), in which masses mj are considered to be point. In Fig. 6.11 a the 
number of external forces is equal to the number of degrees of freedom, but 
there are cases, when the number of excitations is smaller than that of degrees 
of freedom or exceeds it , as illustrated by Fig. 6.11 b, where excitations are 
applied to massless points. Also possible are mechanical systems (damping 
systems) in which elements that realize the concentrated forces of viscous 
friction (x/Yj) are related to massless points (Fig. 6.11 b). 

Further on we shall assume that all necessary information on random 
forces (the probability characteristics of random excitations) is known. In 
this context, the principal difficulty associated with the obtainment of these 
probability characteristics, is not considered, which is acceptable when pre­
senting mathematical methods of solving differential equations, but out of 
question as regards specific problems that engineers have to solve in their 
everyday work. 

In most cases we do not have the probability characteristics of random 
forces (or other types of random excitations) that can act on a designed 
structure in real operational conditions. Besides, random excitations may de­
pend on the structure itself, which is also not yet available. Therefore prior 
to solving equations enormous preparatory work is done to acquire informa­
tion on random excitations by experimental methods (whenever possible) and 
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through processing experimental data to obtain probability characteristics of 
the input, an especially laboursome effort when it comes to the necessity of 
getting information on probability characteristics of non-stationary random 
processes. 

This laboriousness substantially limits the capabilities of the theory of 
non-stationary random vibrations during the solution of applied problems. 

Preparatory work on determining probability characteristics of the input 
takes incommensurably more time, than the solution of equations of motion 
at the input known in probability sense. Eventually, the reliability of a me­
chanical systems operation wholly depends on how accurately the input given 
in the solution reflects the real physics of the process. In a number of cases 
the probability characteristics of the input do not depend on the structure 
itself and are well studied random functions. For example, the probability 
characteristics of road irregularities [28], aerodrome pavements irregularities, 
wind velocities for various areas, etc. have been obtained as a result of pro­
cessing large quantities of experimental data. In this case we can use known 
probability characteristics of the input when analyzing the motion of a sys­
tem. 

The principal methods of solving the equations of motion at non-stationary 
random excitations are partially set forth in Sect. 2.5. 

Using the force method, we obtain the system of equations of small vi­
brations (Fig. 6.11 a): 

Y1 = On (-m1ih - bdJt) + 012 (-m2ii2 - b2Y2) 

+ 013 (-m3ih - b3Y3) + 014 M + oniI + 013hj 

Y2 = 021 (-m1ih - b1yt) + 022 (-m2ii2 - b2Y2) 

+ 023 (-m3ih - b3Y3) + 021iI + 02313 + 024 M j 

Y3 = 031 (-m1ih - b11iI) + 032 (-m2ii2 - b2Y2) 

+ 033 (-m3ih - b3Y3) + 031iI + 03313 + 034 M , 

or in a vector form (after transformations) 

My + By + Cy = DIl, 

where 

[
m1 0 0 1 

M= Om20, 
o 0 m3 

(6.81) 

(6.82) 
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In a more general case the forces of viscous friction can also depend on 
relative velocities. Then the matrix is 

B- . . 
_ [bll .:. bIn] 

....... 
bnl ... bnn 

Let us transform the equation (6.82) to the form 

Z+AZ = DF, 

where 

(6.83) 

The components Ii of the vector F are random functions with known 
probability characteristics (mfj and Kf;fj are known). 

Further on we assume that the number of components Ii of the vector F 
is less than or equal to the number of degrees of freedom of a system. The 
solution of the equation (6.83) at zero initial conditions takes the form 

t 

Z = ! G(t, r)D(r)F(r)dr; 
o 

G(t, r)=K(t)K-I(r), 

(6.84) 

where K (t) is the fundamental matrix of the solutions of the homogeneous 
equation (6.83). The algorithm of determining the Green matrix G (t, r) was 
given in Sect. 2.19. For equations with constant coefficients the Green matrix 
is 

G (t, r) = G (t - r) = K (t - r) . 

The probability characteristics of the components Zi of the system state 
vector Z (6.84) (provided that the number of excitations Ii is equal to the 
number of degrees of freedom) are (at D(r) = E): 

n ti 

mz;(t) = ~! 9ij(t,r)mfj(r)dr; 
3=00 

n n t t' 

Kz;zk(t,t') = ~L! ! 9ij(t,r)9kv(t',r')Kf;fk drdr'. 
3=2 v=l 0 0 

(6.85) 

where 9ij (t, r) are the elements of the matrix G (t, r). 
Let us consider two special cases: 1) Ii are independent random functions 

and 2) Ii are independent random quantities. 
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If fi are independent random functions, then 

t t' 

Kz;z,,(t,t') = t / / giV(t,r)gkv(t',r')Kfvfv drdr'. 
v=1 0 0 

(6.86) 

The autocorrelation functions and variances of the components are 

t t' 

Kz;z;(t,t') = t / / giv(t, r)giV(t', r')Kfvfvdrdr'. 
v=10 0 

(6.87) 

n t t 

Dz;(t) = I: / / giv(t,r)giv(t,r')Kfvfv drdr'. 
v=10 0 

(6.88) 

In the particular case of the excitations being random quantities, i.e. at 

mi; = const; K f;fv (r, r') = Kiv = const, 

the expressions for the mathematical expectations and cross-correlation func­
tions of the solution take the form 

n n t t' 

Kz;z,,(t,t') = I: I: Kfjfv / / gij(t, r)gkv(t',r') drdr'; 
t=1 v=1 0 0 

n t 

mz;(t) = ?=mfj / gijdr; 
0=1 0 

(6.89) 

n n t t 

Dz; = I:?=Kfjfv / / gij(t,r)giv(t,r')drdr'. 
v=10=1 0 0 

Let us consider another particular case where the excitations fi(t) are 
random functions of the white noise type 

(6.90) 

Therefore 

n n t [ t' 1 
Kzjz,,(t, t') = tt~SiV [9ij(t,r) [9kv(t',r')t5(r'-r)dr' dr 

or 

n n t 

Kzjz,,(t, t') = ?=I:Siv ! gij(t, r)gkv (t' , r)dr. 
t=1 v=1 0 

(6.91) 
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We obtain the following expressions for the variances of the components 
Zi of the vector Z 

n n t 

Dz;(t) = ~LSiv 19ij(t,T)9kv(t,T)dT. 
.=1 v=1 0 

For independent Ji we have 

, {O, i =I- j 
Kf;fj (t, t) = a;6 (t _ t'), j = i, 

therefore 

n t 

KZ;Zk(t, t') = La; 19iv(t,T)9kv(t',T)dT; 
v=1 0 

n t 

DZi (t) = L a; I [9iv(t, T)]2 dT. 
v=1 0 

6.4 The Method of Principal Coordinates in 
Non-Stationary Vibrations Analysis 

(6.92) 

(6.93) 

Let us consider a method of solving a system of nonhomogeneous linear equa­
tions with constant coefficients at non-stationary random vibrations that al­
lows us to obtain solutions in analytical form. 

If resistance forces can be neglected or if they satisfy certain conditions, 
we can use the method of principal coordinates to solve the system of equa­
tions (6.81). 

Let us first consider the problem of determining eigenvalues Pj and eigen­
vectors for a system of homogeneous equations of small vibrations ignoring 
the resistance forces. The equation of free vibrations (at bij = 0) takes the 
form (a special case of the equation (6.29)) 

My+Cy = o. (6.94) 

We seek a solution to the equation (6.94) in the form 

y = ucospt. 

As a result, we obtain 

or 
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(6.95) 

The frequencies Pi are determined from the equation 

(6.96) 

Knowing the frequencies, we determine corresponding vectors u(i) that 
satisfy algebraic homogeneous equations (we assume that all frequencies are 
distinct and differ from zero): 

(6.97) 

or in scalar form 

(k=1,2, ... ,n), (6.98) 
v=l 

where 4i2 are the elements of the matrix C(i) 

It is known from the general theory of linear algebraic equations, that 
the system (6.98) is always compatible and has a non-trivial solution (pro­
vided that the rank of the matrix of a system was lower than the number of 
unknowns). For example, we can express the n - 1 component of the vector 
u(i) in terms of the component u~) taking the first n - 1 equations of the 
system (6.98): 

(j = 1, ... , n - 1). 

As a result, for each of the frequencies Pi we obtain 

y(i) = U(i) cos Pit, 

(6.99) 

(6.100) 

where the n - 1 components of the vector U(i) are determined from the sys­
tem of equations (6.99). The component u~) of the vector U(i) can be taken 
arbitrary and, in particular, that equal to unity. The vectors U(i) satisfy the 
condition 

(p1 - p;) (MU(i) . u(j») = 0, 

or (at P; i- PJ) 

(Mu(i). u(j)) = 0 (i:f-j), 

(6.101) 

(6.102) 

which is referred to as the orthogonality condition of the vectors u(i) and 
u(j). Let us form a matrix U out of the components of the vectors U(i): 
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[
UP) ...... Uin )[ 

(1) (n) 
U 2 ...•.• U 2 

U= · '. . , · . . . · . . . 
(1) (n) 

Un ...... Un 

(U~) = 1; i = 1, 2, ... , n) 

and consider a transformation 

y=Uq, (6.103) 

where q is the vector of new unknowns. 
Substituting (6.103) in equation (6.82) (ignoring the resistance forces), 

we obtain 

MUq + CUq = Dlf. 

Let us multiply equation (6.104) by the transposed matrix 

UTMUq + UTCUq = UTDlf. 

(6.104) 

(6.105) 

Now we can show that matrixes UTMU and UTCU are diagonal if due account 
is taken of orthogonality condition (6.102): 

UTMU = M(1), UTCU = A(1). 

The diagonal elements of the matrixes M(I) and A (1) are respectively equal 
to 

(6.106) 

With due account of orthogonality condition (6.101) we obtain from (6.105) 
in scalar form 

n 

LeiVlv(t) 
.. 2 v=I 
qi + Pi qi = """'n'::-=---, -2--' 

L (u;'») mj 

(6.107) 

j=I 

n 

where eiv = L ( Uikdi~), di~ are elements of the matrix D I . 

k=I 
If the system is loaded only with the forces Ii (the random moments are 

absent) applied to the masses mj (Fig. 6.11 a), the matrix DI is equal to the 

identity matrix, i.e. DI = E and di~ = 0 at v #- k. 
The introduced new unknowns qi are referred to as the principal coordi­

nates. The solution of the equations (6.107) at zero initial conditions takes 
the form 
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or 

where 

eiv 
f3iv = -n---

LUijm 
i=l 

(6.108) 

o 1. ( ) 9iv = - smpi t - T f3iv· 
Pi 

Knowing qi we determine the solution of the equation (6.82) ignoring the 
resistance forces 

(6.109) 

n 

where 9kv = ~Uki9?v. Given viscous resistance forces the equations of the 
i=l 

motion of a system (6.82) after the substituting Uq for y and multiplication 
by the transposed matrix UT take the form 

(6.110) 

When resistance forces are taken into account, the matrix UT BU must 
also be diagonal, which it is at 

B = 2nM + 2>'C, (6.111) 

where 2n and 2>' are scalar multipliers. 
Multiplying (6.111) from the left by the matrix UT and from the right by 

the matrix U, we obtain 

(6.112) 

In scalar form, we obtain the following equations from (6.110) with due 
account taken of (6.112) 

(6.113) 
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where 

(6.114) 

As the distribution of friction forces is practically unknown and we only 
know (by experiment) the integral effect of their action, we may adopt any 
hypothesis about the distribution of friction forces whose actions effect is 
equivalent to the integral one. Therefore we may reasonably assume that 
the friction force is distributed so that the condition (6.114) is satisfied, i.e. 
principal coordinates for a conservative system also remain principal for a 
nonconservative system that takes into account the force of viscous friction. 
The solution of the equation (6.113) is 

qi = e -nit (C~i) COS Pit + C~i) sin Pit ) 

+ :i j e-n.(t-v) sinpi(t - 7) (t (3ivfv) d7, 
o v=l 

(6.115) 

or in a more compact form 

n t 

- -nit ( (i) t + (i). t) + "/ (2) (t )f ( )d qi - e C1 cos Pi C2 smpi ~ giv ,7 v 7 7, 
v=10 

(6.116) 

where 

g (2) = ~e-ni(t-r) sinp.(t _ 7)r:I. 
l..V 1.. !J?v, 

Pi 

r:I. _ eiv 

fJw - ~ (i»)2 . 
~ U j m J 

i=1 

Having determined qi we find the components of the vector y and of the 
first two derivatives: 

n 

Yk = L Ukjqj; 
j=1 

n 

Yk = L Ukjqj; 
j=1 

n 

Yk = LUkAj· 
j=l 

At zero initial data we have 

n t 

"/ (2) Yk = ~ giv f vd7. 
v=10 

(6.117) 

(6.118) 
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For example, through transformations we obtain the following expression 
for Yk (at zero initial data), similar to (6.109): 

n t "J (3) Yk = ~ gkv fv dT, 
v=l 0 

where g(3) = ~ U(i)g(2) 
kv ~ k .v· 

i=l 

(6.119) 

Then we find the probability characteristics of the components of the state 
vector y: 

n t 

m Yk = L J g~3)mfvdTj 
v=IO 

(6.120) 

n n t t' 

K YkYj = LL J J g~~(t)gJ!)(t/)KfvfpdTdT'. 
v=l p=l 0 0 

(6.121) 

Let us consider non-stationary vibrations at suddenly applied random 
forces that are constant in time, using Fig. 6.12 as an example. A high-rise 
structure (Fig. 6.12) is presented as a system of lumped masses mj, connected 
by inertialess elastic rods. Let us consider two cases of the vibrations of the 
structure: 1) random forces fj lie in the plane of the drawing and are parallel 
to the axis Xl and 2) the random forces are parallel to the plane X l OX2 and 
are parallel to one another, but have arbitrary directions the way it was in 
the considered case of pulse loading (Fig. 6.4). 

In the first case, if the directions of the principal axes of the rod sections 
coincide with the directions of the axes Xl and X2 the vibrations of the masses 
mi occur in the plane X I OX2. As li are parallel, it is possible to put 

(6.122) 

The equation of small vibrations is similar to the equation (6.82) (DI = E): 

(6.123) 

where B is the diagonal matrix. As the moduli of the forces fi do not depend 
on time we obtain the probability characteristics of the components of the 
vector Xl from (6.89) with due account taken of (6.122): 
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Fig. 6.12. 

n t 

mXk = mit L,Bv J gkvdr j 
v=l 0 

n n t t' 

K XiXk = Dh LL,Bj,Bv J J gij(t,r)gkv(t', r')drdr'j 
J=lv=l 0 0 

(6.124) 

n n t t 

DXk(t) = LLKfjfv J J gk(t,r)gkv(t, r')drdr'. 
v=l J=l 0 0 

We can also use the expressions (6.120) and (6.121) obtained with the help 
of the principal coordinates. Assuming that the components of the vector Xl 

have normal distribution, we can determine their greatest possible values at 
each instant of time using the three sigma rule: 

(6.125) 

At the design, the stresses arising in a structure at its loading by random 
forces are of prime interest. For example, in the structure shown in Fig. 6.12 
where the cross-section of the rod is constant and the structure is loaded with 
random unidirectional forces Ii, the dangerous will be the clamped section. 
The bending moment at the clamped section due to external forces acting on 
the masses mi (including the viscous resistance forces Fi mp) is 
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n n 

M = I: lp Up + YP + Fp) = I: lp Up - mpXlp - apXlp) . (6.126) 
p=l p=l 

Using the equation of the motion of the mass m p , we obtain 

M = t (t CPiXli) . 
p=l i=l 

(6.127) 

The expressions for the components of the system state vector are 

n t "J (3) Xli = ~ giv Ivdr. 
v=IO 

(6.128) 

Substituting (6.128) in (6.127), we obtain 

(6.129) 

where 

The maximum normal stress at the clamped end is 

n t 

u= ~ = I:J qvlvdrj 
2 v=lo 

At the loading by random forces that are constant in time, we obtain 

n t 

u= I:J qvdr·lv. 
v=IO 

(6.130) 

Considering, that U has a normal distribution, we obtain its greatest pos­
sible value (at Iv = f3vld 

u* = miT + 3aiT, (6.131) 

where 
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n t 

miY = L J qvdT m/v dT 
v=10 

n n t t 

a~ = Dh LL,6v,6p J J qv(T)qp(T')dTdT'. 
v=1 p=1 0 0 

(6.132) 

Example 6.2. A random force P = PoH (t), where H (t) is the Heaviside 
function, has suddenly acted on a mass m2 (m2 = ml) (Fig. 6.13). The prob­
ability characteristics of the random quantity Po are known: mpo D Po' It is 
required to determine the mathematical expectation and variance of the max­
imum normal stress at clamped end. The equations of the small vibrations 
of the masses are 

Yl = 8u (-mlih) + 812 (-m2Y2) + 812PoH(t); 

Y2 = 821 (-mlYl) + 822 (-m2Y2) + 822 PoH(t). 

y 

-.-

, 
Fig. 6.13. 

We determine the frequencies 

JEJx 
PI = 0.585 ml P ; JEJx P2 = 3.881 ml P 

and the eigenvectors (putting Uu = U12 = 1) 

where U21 = 3.132; U22 = -0.319. 
Let us turn to the principal coordinates ql and q2: 

Yl = Ullql + U12q2; 

Y2 = U21ql + U22q2· 

z 

As a result, we obtain the following equations of motion: 

(6.133) 
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2 

LUjI!j 
4.132PoH 

ql + p~q1 = 
j=1 

= 
ml (1 + 3.1322)' 2 

LU;lmj 
j=1 

2 

LUj2fJ 
0.681PoH 

q2 + p~q2 = 
j=1 

= 
m2 (1 + 0.3192 ) . 2 

L:2 Uj2m j 
j=1 

The solutions of the equations (6.134) at zero initial data are 

Having determined %, we find Y1 and Y2 (6.133): 

0.382Po 0.618Po 
Yl = 2 (1 - cos PIt) + 2 (1 - COSP2t ); 

m1P1 m1P2 
1. 196Po Po 

Y2 = 2 (1 - COSP1t ) - 0.191--2 (1 - COSP2t). 
m1~ m~2 

The bending moment at the clamped end is 

or 

M = l (-mIih) + 2l (-mdh + Po) 

M = (0.382cosPlt + 0.618cosP2t + 2.392coSP1t 

- 0.382coSP2t + 2)Pol = F(t)Pol. 

The maximum normal stress at the clamped end is 

M F(t) 
(jmax = - = --lPo· 

W'" W'" 

(6.134) 

(6.135) 

The mathematical expectation and the variance are respectively equal to 
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Considering that (Y max has a normal law of distribution, we determine the 
greatest possible value of the stress at the clamped end 

Let us consider the case of suddenly applied time-constant forces fj being 
parallel to one another, i.e. fulfilling the condition fj = {3jf1 and to the plane 
X I OX2, with their directions being arbitrary. The vectors fj meet conditions 
similar to those of (6.53): 

(6.136) 

where n is the number of random forces taken equal to the number of lumped 
masses. Provided that the directions of the principal axes of the cross-sections 
of the structure coincide with the directions of the axes Xl and X2, the equa­
tions of masses small vibrations in planes X l OX3 and X l OX2 are independent, 
therefore we have respectively two vector equations of the type 

MXI + B(1)XI + C(1)XI = fX, ; 

MX2 + B(2)X2 + C(2)X2 = fX2 , 

(6.137) 

(6.138) 

Let us consider the algorithm of the numerical solution of the initial equa­
tions (6.137) and (6.138) without using the principal coordinates which are 
of little use during this solution. The solutions of the equations at zero initial 
data are of the form 

t 

Xl = J c(l)dTf . Xl' 

o 
t 

x2 = J C(2) dTfx2 . 

o 

(6.139) 

(6.140) 

In this case f;,XI and f ix2 are dependent since they are the projections of 
the vectors fi . These projections of the vectors fi meet the conditions (6.136). 
As the vectors fi are parallel, we have 

(6.141) 
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Fig. 6.14. 

Let us consider problems arising during an analysis of the vibrations of 
mechanical systems at the action of suddenly applied random time-constant 
forces having an arbitrary direction. For example, the problem of designing a 
damping system with a limited deflection is classified among such problems. 
The damping system of an object that allows a limited angular displacement 
dependent on .d before the impact of the object against the wall of the 
structure is shown in Fig. 6.14. During the design of the damping system 
it is required to determine the greatest possible displacement of a point k 
(Fig. 6.14) at the worst action of fi in the given direction which should be 
less than .d . In the general statement of the problem the task is to determine 
the greatest possible displacement (or velocity) of the mass mi in the given 
direction determined by a single vector e (Fig. 6.15), i.e. to find the maximum 
of the functional 

X1 

Fig. 6.15. 
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where Xj is the vector of the displacement of the mass mj in a plane XI0X2. 

From the general solution (6.137)-(6.138) we can obtain the vectors Xj of the 
form 

n t 

Xj = L / G~j) (t, T)fidT, (fi = fix, h + fix 2 h), 
.=1 0 

(6.142) 

where G~j)(t,T) are the diagonal matrixes (2 x 2). For example, 

where g;i), g;i) are respectively the elements of the matrixes G(I) and G(2). 

With due account of fi = {lifl we have 

n t 

"/ (j) Xj = L Gi (t, T)dT {li f l 

.=1 0 

(6.143) 

and the condition, which the vector fl satisfies 

(6.144) 

Let us consider the special case of the vector e coinciding with one of the 
vectors of the basis {ij}, e.g., with i1 . In this case 

or, if we use the expression (6.143), 

t 

Jj = Xj, = J G(j)ThdT' fl' 

o 

(6.145) 

(6.146) 

It is required to determine the maximum value of (6.146) with due account 
of the condition (6.144). The matrixes G(j) are diagonal with the elements 

n 

g(j) = "g(l) 8. 
11 L J' . ., 

i=1 

therefore G(j)T = G(j). 

n 

g(j) - "g(2){l. 
22 - L ji ., 

i=1 
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Using the Lagrangian multiplier, we obtain a functional 

(6.147) 

From (6.147) we obtain an equation for the determination of the vector fi, 
at which the functional Jj1 reaches the maximum value at an instant t: 

or 

t f C(j)i1dr - A1 C (1)f1 = O. (6.148) 

° 
The relationships (6.148) and (6.144) enable us to determine the Lagrangian 
multipliers 

t t 

Ai = (C(1»)-1 f C(j)i1dr. f C(j)i1dr. 

° ° 
As C(1)-1 = Ihl2 E, then 

t 

Al = Ihl f C(j)hdr 

° 
Having determined Al from the relationship (6.148), we find 

t 

f; = ;1 (C(1)fl f C(j)i1dr. 

° 
With due account of (6.151) we obtain 

t f C(j)ildr 

f; = 1ft! .,....o-:t-----,- = 1ft! iI, 

f C(j)ildr 

° 

(6.149) 

(6.150) 

(6.151) 

(6.152) 

as one would expect, because the equations of motion (6.137) and (6.138) are 
independent. 
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Having substituted the expression for fi in (6.146), we obtain the max­
imum value of the displacement of the mass mj in the direction of the axis 
Xl 

t t 

maxXjl = If 11 / aCi)ildril = If 11 / a(j)dr. (6.153) 

o 0 

Let us determine the probability characteristics of the greatest possible dis­
placement of the mass Xjl 

m." ~ a;m,,, D." ~ aJD,,, (a; ~ ! GU);,dTil) . (6.154) 

The law of distribution of the random quantity maxXjl = xiI takes the 
form (as is the case with (6.67)) 

II (Xjl,t) = laj(t)I~!lv'21Tx 
( { (xiI - aj mil )2} + {(XlI - ajmjn) 2 

}) 
x exp - 22 2 exp - 22 2 . 

aj IJ!l aj IJ!l 
(6.155) 

Knowing the distribution law of the max Xjl and taking advantage of condi­
tion (6.69), we can determine the greatest possible value Xl at an arbitrary 
fixed instant of time 

X;1 max 

/ Ii (Xjl' t) dXjl = 0.99. (6.156) 

o 

Having determined XlI max from (6.156) for a number of discrete instants 
of time t, we obtain a plot of variation of xiI max with time that allows us to 
determine an instant of time t* at which xiI max attains the maximum value, 
i.e. (max xiI max)· 

Let us consider the basic case, when it is necessary to determine the 
greatest possible value of the projection of the vector displacement Xj of a 
j-th mass onto the given direction determined by a vector e ( Fig. 6.15), i.e. 
the task is to determine the maximum Jj at fi = {3ifl: 

Jj = (Xj. e) = Xjl cos a + xj2sina, 

or with due account of (6.142) 

t 

Jj = / (a(j)e. f1) dr, (6.157) 

o 
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With due account of condition (6.144) we obtain a functional 

t 

Jj = J (a(j)e. fl) dT - ~A1 [( a(j)f1 . f1) - 1] . 

o 

According to the earlier outlined method, we find fi 
t 

(C(l l )-1 J atilTedr 

f; = -;==========0======= 
t t 

(C{ll) -1 J atilT edT' J aCilT edT 

o 0 

or on rearranging, the equation takes the form 

The maximum value of the functional (6.157) is 

maxJj = max(xj' e) = Al 
~-------------------------------

~ If, I (j gi{l co, a dT r + (j gW ';0 a dT r 

(6.158) 

(6.159) 

(6.160) 

(6.161) 

Having determined the maximum value of the projection of the displacement 
of the j-th mass on the given direction (6.161), we find the parameters of 
distribution law (6.155) for max(xj' e) = maxxje 

f . (x* t) ___ 1---::= 
J je' - I I IF Cj (7h V 47r 

(6.162) 

where 

x;. ~ m", 'j., Cj ~ (j gH' coo a dT r + (j g¥] ';0 a dT )' 

We determine the greatest possible value Xji from the condition 

mT\ (.,.,t) dx,. ~ 0.99 (6.163) 

o 
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The outlined methods of non-stationary vibrations of linear systems anal­
ysis under the action of random, suddenly applied time-constant forces, en­
ables us to solve a number of practically important problems, including that 
of the probability of location of the masses (with reference to the object 
shown in Fig.6.4) at the vibrations in the area of allowable displacements 
within the limits of a given interval of time at the worst external random 
actions on a system. 

Let us consider as an example the launch of a flying vehicle (Fig. 6.16 a), 
assuming that the motion of the guide-rocket system occurs in and relative to 
the plane of the drawing. The problems connected with the launch of flying 
vehicles when only limited information is available on the random forces 
involved, are considered in Ref. [25J. Before the loss of contact with the guide 
the system has two degrees of freedom (angle <p in plane x~ Ox~ and angle {) 
in plane x~ Ox~. The start of the engine produces the thrust R that varies in 
time, as shown in Fig. 6.16 b. Ignoring the interval of time (0, td in the limit, 
we may assume for practical purposes that the thrust practically instantly 
reaches its nominal value Ro (the worst case of the action on the system), i.e. 
the function R can be considered a suddenly applied time-constant force. In 
real systems, however, due to technological inaccuracies the engines thrust 
vector R does not coincide in its direction with that of the centerline of the 
flying vehicle (deviates from this line by a random angle c) and, besides, shifts 

t, 

b) 

Fig. 6.16. 



www.manaraa.com

6.4 The Method of Principal Coordinates in Non-Stationary Vibrations Analysis 239 

for some random distance e, which results in the occurrence of a random force 
f and a random moment M (see Fig. 6.16 a). 

Generally, the point k, where the force R is applied, does not lie in the 
plane of the drawing (see Fig. 6.16 a). The arising random vectors f and M, 
therefore, have arbitrary directions, i.e. the projections of these vectors onto 
the axes Xj are non-zero, which leads to vibrations in the system at the launch 
both in and relative to the plane of the drawing. Considering the motion of 
the system during the launch, we can obtain two linear equations (assuming 
the arising vibrations to be small) in the angles <p and {} in the coordinate 
system X)l) connected with the guide (see Fig. 6.16 a): 

cp + al1<P + a 12-O + bl1 <P + b12{} = cl1ix2 + Cl2ix'a + dl1 Mx2 + d12 Mx'a; 

19 + a21<P + a 22 -O + b21 <P + b22{} = c2Iix2 + C22ix'a + d22Mx2 + d22Mx2 , 

or in vector form 

(6.164) 

The section of a rocket and random excitations (force f and moment 
M), reduced to its center of masses are shown in Fig. 6.17 in a system of 
coordinates connected with the guide. It follows from Fig. 6.17 that: 

f Ro ·f Ro' ·f f'f + f ·f = - c cos al 3 - c sm al 2 = x'a 1 3 x 21 2; 

M R ·f Ro' ·f M'f M'f = - oe cos al 3 + esma12 = x'a 1 3 + x21 2, 

where a is a random angle. 
The projections of the random force f and the random moment M satisfy 

the conditions similar to the condition (6.144): 

Fig. 6.17. 

Xl 
3 
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During the launch (at the moment tk when the flying vehicle loses contact 
with the guide) of interest, among other things, is the greatest possible value 
of the functional 

J = al cp (tk) + a2CP (tk) , 

which enables us to estimate the rockets range scatter induced by initial 
excitations (cp (tk)) and (cp (tk)). Considering that the laws of distribution of 
the moduli lei and lei are known, the greatest possible value of the functional 
J is determined in accordance with the preceding algorithm. 

6.5 Forced Stationary Random Vibrations of Linear 
Systems 

In the case of the time of the process being much greater than that of the 
transient process, the vibrations of a system may be considered as steady­
state, or, stationary if they are induced by stationary random forces. 

The vector equation of the forced vibrations of a system with n degrees 
of freedom is of the form (6.82) 

My + By + Cy = Dif. (6.165) 

We consider that the probability characteristics of the components of the 
vector f(t), including spectral densities Sfi(w) and Sfdj' are known. 

First, let us find out under what additional conditions a centered sta-
o 

tionary random function f k (t) can be presented in the form of the Fourier 
integral 00 

Ik(t) = / Pk(w)eiwtdw 
-00 

or in vector form (when there is a system of random functions) 
00 

f(t) = / ~(w)eiwtdw. (6.166) 

-00 

The correlation function of a stationary random function should depend 
on the difference of instants of time (see Sect. 3.1). Let us consider the cor­
relation function 

K/k (t, t') = M [Ik(t), h(t')] 

~ M [ (I ~ke~'dw) (I ~;e-~'" dw') 1 
00 

= / / ei(wt-w't') K [PkPkl dw dw', (6.167) 

-00 
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whose integrand will depend on the difference of instants of time, if the cor­
relation function K [Pk, Pi:,j satisfies the condition 

(6.168) 

In this case, having integrated with respect to w, we obtain from (6.168) 

00 

KIk(t,t') = / SIk(w)eiWrdw, (6.169) 

-00 

where 7 = t - t'; S fk (w) is the spectral density of the components of the 
vector f. 

Similarly we obtain the following expression for cross-correlation functions 

00 00 

KlkfvCt, t') = / / ei(wt-wlt/)K[Pk(W')P~(w)j dwdw'. (6.170) 

-00 -00 

It follows from relationships (6.170), that in the general case stationary 
random functions can be related non-stationarily as their cross-correlation 
function depends on two moments of time t and t' and not on their difference. 
However, if 

(6.171) 

where Slkfv(w) is the cross-spectral density, the correlation function Kfkfv 
depends on t - t'. Indeed, having substituting (6.171) in (6.170) and integrat­
ing with respect to w, we obtain 

00 

Klkf" (t, t') = / eiwr Sfkfv (w) dw. (6.172) 

-00 

We shall seek the solution of equation (6.165) in the form (stationary 
solution) 

00 

y = / yoeiwr dw. (6.173) 

-00 

Having substituted (6.173) and (6.166) in the equation (6.165), we obtain 
(Sect. 3.6) 

(6.174) 

whence 
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Yo = W (iw) «P, 

where 

In scalar form 

n 

YkO(W) = L Wkj(W)Pj(W). 
j=l 

where Wkj (w) are the elements of the matrix W. 
From (6.173) we find the solution in scalar form 

00 ! . t 
Yk = Yko(w)eW dw. 

-00 

Having substituted into (6.177) expressions for YkO we obtain 

00 n 

Yk = ! L Wkj(w)pj(w)eiwtdw. 
-00 j=l 

(6.175) 

(6.176) 

(6.177) 

(6.178) 

The cross-correlation functions of the components of the vector Y are 
equal to 

00 00 

K yky• (t, t') =M [Yk (t) Yv* (t')] = ! ! M [Yko (w) y~o (w')]ei(wt-w't')dwdw'. 

-00 -00 

The cross-correlation function K yky• depends on the difference of instants 
of time t - t' only in cases, where the condition similar to that of (6.171) is 
satisfied 

(6.179) 

Therefore from (6.179) we obtain 

00 

Kyky• (7) = ! SYky.(w)eiWT dw. (6.180) 
-00 

Let us obtain an expression for the autocorrelation function K yky• (7), 

dependent on the input spectral densities 
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K ykYv (t, t') = M [Yk (t) Yv* (t' )] 

~ M [ (Z t, Wk; (W) W; (W)e"'dW) 

X (l ~ w;p (w') w; (w') e -,,'<' dw) ] (6.181) 

00 00 n n 

= J J L L Wkj (W) W~p (w') M [Pj (w) P; (w')] eiwt-iwt' dw' dw. 
-00 -00 j=1 p=1 

The expression (6.181) depends on the difference t-t' if condition (6.171) 
is satisfied 

M [Pj(W)p;(W')] = Shfp (w) 8 (w' - w) . 

Therefore from (6.181) we have 

00 n n 

Kyky" (7) = J L L Wkj (W')W~pS!p!j (w)eiWT dw. 
-00 j=1 p=1 

(6.182) 

Having equated the obtained expressions for cross-correlation functions 
(6.180) and (6.182) we obtain 

1 [S., •. (W) - ~t. Wk;(W)W;p(W)s/;/,(W)] e"Tdw" O. (6.183) 

The identical equality of the left-hand side of relationship (6.183) to zero 
will be fulfilled if (as eiwT =f:. 0) 

(6.184) 

From obtained relationship (6.184) we determine the spectral densities of 
each of the component (k = v) 

n n 

SYk(W) = LLWkj(W)WkP(W)S!j!p(w). (6.185) 
j=lp=1 

In the specific case of Ij being independent 
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relationships (6.184) and (6.185) take the form 

n 

SYkYv (W) = L WkjWvjSfj (W); 
j=l 

n n 

SYk(W) = L WkjWkjSfj(W) = L IW kjl2 Sfj(w). 
j=l j=l 

(6.186) 

The variances of the components Yk (t) of the solution vector yare 

(6.187) 

or in the specific case of 

j =I- v; 

j = v, 

(6.188) 

Knowing spectral densities, we can determine the correlation functions of 
the components of the vector y: 

00 

K YkYk = J SYk (w)eiWT dT; 

-00 

(6.189) 
00 

K ykyv = J SYkyJw)eiWTdT. 
-00 

Relationships (6.189) allow us to determine the parameters of the joint 
multidimensional normal distribution law of the components Yk 

00 

o-;k = Kykyk(O) = J SYk(w)dw; 
-00 

-00 

For the solution of equation (6.165) we can use the method of principal 
coordinates (the way we did it in the earlier considered case of non-stationary 
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random vibrations). With due account taken of the forces of viscous friction 
we obtain for % the equations of the (6.113) type: 

(6.190) 

Let us take advantage of the Laplace transform, then from (6.190) 

n 

Qj(p) = L Wjv(p)~v{p), (6.191) 
v=l 

For the k-th component of the vector of solutions (passing to the Laplace 
transform) we have 

n 

Yk(p) = L UkjQj(p). (6.192) 
j=l 

Having substituted (6.191) in (6.192), we obtain 

n 

Yk{p) = L Wkv{P)~v(p), (6.193) 
v=l 

If we replace operator P by iw in (6.193), we obtain the following expres­
sion 

n 

Yk(W) = L Wkv(W)~v(w). (6.194) 
v=l 

Let us consider the special case of a system with two degrees of freedom 
(Fig. 6.18). The equations of motion take the form 

Y1 = 811 {-ml'ih - bllyd + 812 (-m2'ih - b22Y2) + 81111 + 81212; 
Y2 = 821 (-ml'ih - bllY1) + 822 (-m2ih - b22Y2) + 821 11 + 82212. (6.195) 

The spectral densities SIll Sh and Shhof the random stationary forces 
acting on a system, are considered to be unknown. In order to determine the 
spectral densities of the output SYl' SY2 and the cross- spectral density SYlY2 
we must obtain the expression for Wik(W) .. 

According to the presented method of solution for the general case of the 
system with n degrees of freedom we have 
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z 

Fig. 6.18. 

00 00 

Yl = J YlOeiwtdwj Y2 = J Y20eiwtdwj 

-00 -00 

(6.196) 
00 00 

it = J 4>leiwtdwj h = J 4>2eiwt dw. 
-00 -00 

In order to determine YlO and Y20 we obtain the system of equations 

(1 + bn iw8n - w2m8n ) YlO + (812iwb22 - 812m2w2) Y20 

= 811 4>1 + 8124>2j 

(821 bn iw - 821 mlw2) YlO + (1 + 822iwb22 - 822m2w2) Y20 

= 821 c:Pl + 8224>2. 

From system (6.197) we determine 

YlO = Wn (w) 4>1 + W12 (w) c:P2j 

Y20 = W21 (w) c:Pl + W22 (w) c:P2, 

where Wij = iJ.ijj iJ. 

iJ. -18n (iwb22 - m2w2) 812 I. 
11 - 821 (1 + 822iwb22 - 822w2m2) , 

(6.197) 



www.manaraa.com

6.5 Forced Stationary Random Vibrations of Linear Systems 247 

Ll=I(1+811iWbl1-8i1m1w2) (iwb22-m2W2)812 I 
(iwb l1 - mlw ) 821 (1 + 822 iwb22 - 822m2W2) . 

According to (6.183), we obtain the following expressions for the spectral 
densities of the solutions 

SYl (w) = wnw;lSh + wl1 wi2S hh + W12W;lShh + W12Wi2S h; 

SY2(W) = W21W~lSh + W21W~2Shh + W22W~lShh + W22W~2Sh; (6.198) 

SYIY2(W) = Wl1W~lSh + Wl1W~2Shh + W12W~lShh + W22W~2Sh' 
Example 6.6. A stationary random force h (t) with the known spectral 

density of 

acts on a mass m1 (Fig. 6.19). 
It is required to determine the variance of a deflection Yl as a function of 

the masses ratio mdm1 The equations of motion of the masses m1 and m2 

(a special case of the equations (6.195)) are 

m1 811ih + m 2812iiz + 811 bllYl + Y1 = 81lh; 

m1 82dh + m2822ih + 821 bl1 Y1 + Y2 = 82dlJ 
4r n3 

811 = 822 = 9EJx ; 812 = 821 = 18EJx ' 

(6.199) 

Going over to the non-dimensional time t1 = Pot, where Po is the frequency 
of the vibrations of the mass ml (at m2 = 0), we obtain the following system 
of equations: 

y 

z 

Fig. 6.19. 
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(6.200) 

It is possible to present the coefficient bll as bll = m1POn2, where n2 is a 
non-dimensional factor. Let us go over to the non-dimensional time, then the 
correlation function (T is the non-dimensional time) takes the form 

(a' = a/po). 

Let us obtain the spectral density expressed in terms of the non-dimensional 
w 

frequency w' = -, 
Po 

S = 2Dfta' 
It (a,2 + w,2) Po· 

Assuming that a' = npo where n is a non-dimensional parameter, we obtain 

s _ 2Dftn 2Dlt n 
It - Po (n2 + w,2) = Po In + iw'1 2 · 

Finally we obtain the system of equations 

7 
iil + Snl'ih + n2Y1 + Y1 = dllil; 

7.. .. 7. d f 
SY1 + n1Y2 + gn2Y1 + Y2 = 21 1· 

The spectral density (a special case of (6.198)) is 

Sy,(w) = IWlll2 Sft, 

where 

1 "9 + 2W 144 n1 

(6.201) 

(6.202) 

3 [4 (. ,)2 15 ] 

W11 = ----~~--------~~------------~--------------~ 
EJ [15 (. ,)4 15 (. ,)3 ( )(. ,)2 ]. 

x 64 n1 2W + 64 n1 n2 2W + n1 + 1 2W + n2iw + 1 

The variance of the deflection amplitude is 

(X) 

D = ~ J I 12 2D It n d ' y, Wll 2 W. 
Po In + iw'l 

(6.203) 
-(X) 
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Through transformations we obtain the following expression for D y1 , 

which allows us to use the tabulated integrals (see Appendix 2): 

00 

DYl = Dh J' G(iw') dw 
7rpO IA(iw)12 

-00 

where 

G(iw') = ~ + 11454 nl(iw,)2; 

A(iw) = ~~ nl(iw')S + ~~ (nln + nln2) (iW')4 

+ (1+n1 + ~~nln2n) (iw,)3+(nln+n+n2)(iw,)2 

+ (1 + nn2) iw' + n. 

(6.204) 

Having used the values of the integral given in the Appendix 2, we obtain 

where 

a4 = 1 +nn2; 
15 

b3 = 144 nl; 

as =n; 
4 

b4 = 9; 

(6.205) 

The plot of Js as a function of nl = mdm2 for n2 = 0.2 and n2 = 0.6 at 
n3 = 0.05 is shown in Fig. 6.20. 

Let us consider the random vibrations of a mechanical system induced by 
stationary forces with a delay, for example 

(k = 1, 2, ... , n) , (6.206) 

where tk is time of delay (h = 0). Similar excitations are acting, for example, 
on a vehicle (Fig. 6.21), which moves along a road with irregularities. The 
excitations acting on the wheels, depend on the irregularities of the road. If 
at the instant of time t the irregularity was under the front wheels, then at 
the instant of time t + t2, where t2 = L/v, it will be under the rear wheels. 
In this case it is possible to present the random excitations as 
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00 

fk(t) = II (t - tk) = / Pl(w)eiw(t-tk)dw. 

-00 

~r------r------,------. 

Fig. 6.20. 

Fig. 6.21. 

v -

We determine the solution of equation (6.165) in the form of (6.177) 

00 

Yk(t) = / Yko(w)eiwtdw. 
-00 

(6.207) 

(6.208) 

Having substituted (6.206) and (6.207) in equation (6.165) (going on to vector 
form), we obtain 

(6.209) 
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where 

1 0 0 0 PI 

o e-iwt2 0 0 PI 

H= 0 0 e- iwt3 0 0 q;= 

0 0 e-iwtn 
PI 

It follows from (6.209): 

Yo = W1 (w)q;, (W1(w) = l-w2 M + iwB + CI- 1 DIH) , 

Or in scalar form 

Yko = t Wlk j P j = (t Wlk j ) PI = Wk P l. 
j=1 j=1 

(6.210) 

For the k-th component of the vector y (t) we obtain the expression 
00 

Yk(t) = f Wk (w) Pleiwtdw. (6.211) 

-00 

By transforming the way we did during the derivation of relationship 
(6.185), we obtain the following expressions for the spectral densities and 
cross-spectral densities: 

SYk = wkw'kSft = IWkl2 Sft; 
(6.212) 

as Sfjfv = Sft· 
Let us consider the stationary vibrations of a vehicle moving on a road 

with random irregularities (Fig. 6.21). 
Let us restrict our consideration to the case of the vibrations of the vehicle 

in the plane of the drawing (Fig. 6.21). The requirements specified for motor 
transport (carrying capacity, speed, cross-country capability etc.), substan­
tially depend on the elastic characteristic of the suspension system. Suspen­
sion analysis is complicated by the fact that forces acting on it from the 
road are usually of random nature. Numerous experimental investigations of 
the effect of various types of roads on vehicles carried out in the past few 
years have made it possible to obtain the necessary information on random 
excitations that act on vehicles (in particular, the spectral densities of forces 
arising due to random irregularities of a road). 

A design scheme (with due account of the masses of the suspension sys­
tem) is given in Fig. 6.22. 

When deriving equations of motion, let us take advantage of Lagrange 
equations of the second kind. To be able to do this let us obtain expressions 
for kinetic and potential energies, as well as for Rayleighs dissipative function: 
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Fig. 6.22. 

As 

YA = Y + ar.p, YB = Y - br.p, 

it is possible to present the expression for kinetic energy by way of eliminating 
r.p and Y as 

m. . 2 J. . 2 mlYr m2Y~ 
T = 2L2 (bYA + aYB) + 2L2 (YA + YB) + -2- + -2-' 

Having substituted the expressions for T, n and R into the Lagrange equa­
tion of the second kind 

(6.213) 

Through transformations we obtain the system of equations that take the 
form 

mb2 + J mab - J 
L2 YA + L2 YB + C2 (YA - YI) + a (YA - yr) = 0; 

ma2+J mab- J 
L2 YB + L2 YA + C2 (YB - Y2) + a (YB - Y2) = 0; (6.214) 

mlYI - C2 (YA - YI) + CI (YI - hr) - a (YA - YI) = 0; 

m2Y2 - C2 (YB - Y2) + CI (Y2 - h2) - a (YB - Y2) = O. 
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If the condition J = mab is satisfied, the vibrations of the front and rear 
suspensions become independent. In this case, from the system (6.214) we 
obtain two independent systems of equations: 

mAYA + C2 (YA - YI) + a (YA - YI) = 0; 

mlYI + aYI + (CI + C2) YI - aYA - C2YA = C2 hl(t), 
(6.215) 

mBYB + C2 (YB - Y2) + a (YB - Y2) = 0, 

m2Y2 + aY2 + (CI + C2) Y2 - aYB - C2YB = cIh2(t - t2), 
(6.216) 

where 

J+ma2 
mB= 

Let us consider an example (Fig.6.22) with the following specific nu­
merical data: a = 240 cm; b = 150 em; m = 50 kg; mI = m2 = 8 kg; 
C2 = 4000H· cm- I ; CI = 104 H· cm- I ; a = 150H· s· cm- I . The spectral 
density of the irregularities of the road h (for the given type of road) has the 
form 

(6.217) 

where v is the speed of the vehicle, km/h. The numerical factors entering in 
the left-hand side of expression (6.217), are dimensional. 

The laws of variation of the spectral density Sh (w) as a function of w for a 
number of motion velocity values v, km/h are shown in Fig. 6.23: I - v = 20; 
II - v = 30; III - v = 40; IV - v = 50; V - v = 60. Putting a = 0 
in equations (6.213), (6.214), let us determine four frequencies: for system 

15r---~--~k----r----r----r--~ 

5 10 15 20 25 

Fig. 6.23. 
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(6.215) we obtain Pll = 12.2 S-I, P12 = 42.6 S-1 and for system (6.216) we 
get P21 = 9.6 S-I, P22 = 40.2 S-I. 

Let us obtain the mapping of equations (6.215) and (6.216) in the fre­
quency domain 

[mA(iw)2 + a(iw) + C2] YA(iw) - (C2 + aiw) Y1(iw) = 0; 

- (C2 + aiw) YA(iw) + [ml(iw)2 + aiw + Cl + C2] Y1(iw) = C2 Hl(iw); 

[mB(iw)2 + a(iw) + C2] YB(iw) - (C2 + aiw) }2(iw) = 0; 

- (C2 + aiw) YB(iw) + [m2(iw)2 + a(iw) + Cl + C2] Y2(iw) = CI H2(iw), 

where 

H2(iw) = HI (iw)e- iwt2 . 

From the obtained system of algebraic equations we determine 
YB(iw), YB(iw), Y1(iw) and Y2 (iw). 

YA(iw) = WA (iw) HI (iw) , YB(iw) = WB(iw)e- iwt2 H1(iw), 

Y1(iw) = WI (iw) HI (iw) , 

where 

(t2 = L/v) . 

(6.218) 

(6.219) 

(6.220) 
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According to Sect. 3.6 we obtain the spectral densities of the displace­
ments YA, YB, Yl> Y2 and of their first derivatives. Let us restrict our consid­
eration to the determination of the spectral densities of the accelerations of 
the points A and B: 

SYA = IWAI 2 W4Sh(W), 

1 (1)12 4 () SYB = W B W Sh W , (6.221) 

(wil) = WBe- iwt2). 

The variation of the spectral densities of the accelerations of the points A 
and B as a function of w for different velocities v is shown in Fig. 6.24-6.26. 
Let us determine the variance of the vertical acceleration of the point C (the 
driver seat), which characterizes the degree of riding comfort. According to 
Fig. 6.22, we have 

Yc = Y + <pac· 

Or, going onto YA and YB, 

(6.222) 

where 

f\ 

10 
s·· 
~ 

7.5 

5 

s>e v= 10kmlh 
~ 

V 
\ \ 

) \: ....... ~ .... - ~ 

2.5 

10 20 30 40 50 60 III 

Fig. 6.24. 
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Fig. 6.25. 
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Fig. 6.26. 

Going in (6.222) to the Fourier transformation we obtain 

Yc(iw) = KAYA(iw) + KBYB(iw) 

or (using relationships (6.218)) 

Yc(iw) = (KAWA + KBWBe-iwt2)Hl = WcHl' 

(6.223) 

(6.224) 

The spectral density of the displacement of the point C with due account 
of relationship (6.224) is 
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where We = (KAWA + KBWBe-iwt2 ). 

The spectral density of the acceleration of the point C and the root-mean­
square acceleration of the point C are respectively 

(6.226) 
00 

lT~c = f IWe l2 w4Sh(V,W) dw. (6.227) 

-00 

Variation of the root-mean-square value of the acceleration lTyc of the 
point C as a function of velocity v for the example considered is shown in 
Fig. 6.27. It follows from the plot that during the motion along the given road 
(characterized by spectral density (6.218)) the most unfavorable velocity v 
is v::::! 50 krnjh at which the root-mean-square values of accelerations acting 
on the driver reach the maximum. 

12 

8 

4 

2 
aYe' m/s 

./ - :/ 

r ~ 
I 

J 

10 20 30 40 v, kmlh 

Fig. 6.27. 

Let us bring the expression (We) to the form convenient for integration. 
It is well known, that any function f (iw) depending on imaginary argument 
can be presented as 

f{iw) = /I(w) + i/2(w). 

Therefore 

and the expression for We is transformed to the form 
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where 

WI = KAWA, + KBWB, coswt2 + KBWB2 sinwt2, 

W2 = KAWA2 + K BWB2 COSWt2 + KBWB, sinwt2. 

The square of the modulus W c ( iw) is equal to 

As a result we obtain 

00 00 

a;)v) = J Wfw4Sh(v,w)dw + J Wiw4Sh(v,w)dw. 
-00 -00 

Considering, that Yc has normal distribution, we obtain the greatest possible 
value of the random acceleration (at mh = 0) acting on the driver 

As Sh(V,W) (6.217) depends on the vehicles motion velocity v we can deter­
mine (numerically) such value of this velocity V*, at which maxyc(v) reaches 
its maximum value 

max (max Yc(v» = max Yc(v*). 
v 
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7. Random Vibrations of Strings; Longitudinal 
and Torsional Vibrations of Straight Rods 

7.1 Introduction 

It was considered in the preceding chapters devoted to random vibrations of 
mechanical systems with a finite number of degrees of freedom that elastic 
elements (for example, rod elements in Fig. 5.8, 5.9, 5.24, 6.7, 6.10) are in­
ertialess, which, of course, is not quite so. This is true only in cases, where 
concentrated masses are considerably greater than the masses of elastic el­
ements. Unfortunately, the term considerably greater does not relate to a 
specific numerical estimation and for this reason it is uncertain and some­
times unconvincing. Everything depends on the degree of accuracy imposed 
on the final numerical results of an analysis. For example, Figure 5.24 shows 
a concentrated mass m, connected with a spring that was considered mass­
less (inertialess). The real spring, however, has a mass, which at vibrations 
leads to the occurence of inertia forces that can substantially change any 
calculation results obtained without regard to them. 

A mast with an antenna is shown in Fig. 5.8. During the analysis of ran­
dom vibrations of this structure, the inertia forces of the rod (mast) were not 
taken into account, which makes it impossible for us to estimate the accuracy 
of the obtained results. The only thing we may assert is that the greater the 

ratio M Z (where ml is the mass of the unit length of the mast), the more 
ml 

accurate are the results. However, in order to obtain specific numerical results 
demonstrating the influence of this ratio on the accuracy of a solution, we 
must take the inertia forces of the mast into account in our analysis, which 
is only possible if we consider the mast to be a system with distributed pa­
rameters. Similar problems arise when dealing with systems that have several 
degrees of freedom (for example, see Figs. 6.7,6.10). It is possible to estimate 
the accuracy of the results of an analysis of mechanical systems containing 
lumped masses connected by elastic elements in cases where the latter are 
considered massless only with respect to more accurate mathematical models 
that take into account the inertial properties of elastic elements. This means 
that it is necessary to consider these elements as systems with an infinite 
number of degrees of freedom (systems with distributed parameters). In this 
chapter we consider the random vibrations of simplest mechanical systems 
with distributed parameters. These systems include real objects, the design 
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z 

schemes of which can be presented as a string (a string is a rod whose bend­
ing and torsional rigidity can be ignored) (Fig. 7.1-7.5), as a rod when we 
consider longitudinal vibrations (Fig. 7.6 a) or as a shaft if we have to do with 
torsional vibrations (Fig. 7.6 b). The random vibrations of spatial-curved rods 
are considered in the following chapter. 

A stretched string that is often used as a frequency gauge or as a low­
frequency electromechanical filter (low-frequency in comparison with the fre­
quency spectrum of electrical filters) is shown in Fig. 7.l. 

A simplified mathematical model of a cable road is given in Fig. 7.2. A 
lumped mass subjected to the action of a random aerodynamic force F moves 
on a tensioned cable (string) with a velocity v. As a result some spatial ran­
dom vibrations of the mass m will take place. If, as an example, we confine 
ourselves to vibrations that occur only in the vertical plane (YOZ), we can 
present the mathematical model of the system as it is shown in Fig. 7.2 b, 
where Fy is the vertical component of the aerodynamic force F. Random 
accelerations occurring at vibrations can be quite considerable. Having de­
termined the greatest possible values of the accelerations acting on the mass 
m when it moves along the cable, we can reduce the force by changing the 
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a) 

z 

b) 

Fig. 7.3. 

tension Q10 and the velocity of the motion of the mass. This can be done, 
however, if we have an analytical or numerical solution to the stated problem. 

A section of a wire (string) that contacts, for example, with a moving 
trolleybus is shown in Fig. 7.3 a. The contact device (current collector) can 
be presented as a lumped mass m and a rigidity Cl (Fig. 7.3 b). Because of the 
roads random irregularities (h) the point k obtains random vertical displace­
ments which results in a kinematic excitation of the system. When vibrations 
take place, there is the possibility of cases where, depending on the proba­
bility characteristics of the road, motion velocity V and other parameters of 
the system (m, Gl , Q1O), the contact force between the wire and the mass 
m at discrete instants of time vanishes. This may happen because the con­
straint between the wire and the mass is unilateral. In real conditions a small 
sagging of the wire (dot-and-dash line in Fig. 7.3 b) is always there and this 
considerably increases the probability of loss of contact. 

A tape drive mechanism of an information recording and representation 
system is shown in Fig. 7.4 a. The system rests on a foundation that has a ran­
dom displacement Yo (t) (Fig. 7.4 b), as a result this causes random vibrations 
of the moving tape, which leads to the distortion of the information. 

A hose section, inside which a liquid moves (a hose is a particular case of 
a pipeline whose bending and torsional rigidities are equal to zero, i.e. it can 
be considered as an absolutely flexible rod) is shown in Fig. 7.5. The hose has 
a local bilateral constraint in the section k (Fig. 7.5 a) with a random vertical 
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y 

b) 

Fig. 7.4. 

W, p 

~--~--/ ------~~ 
YK(t) 

a) 

Fig. 7.5, 

z 

z 

z 

displacement that results in the kinematically-induced vibrations of the hose. 
The modes of random vibrations depend on the motion velocity of the liquid 
wand a pressure p. A rod with a variable cross-section and a lumped mass m, 
shown in Fig. 7.6 a, is subjected to the action of a random distributed force 
qz (t) and a concentrated force Pz (t) . The random longitudinal vibrations of 
the rod cause random stresses that must be incorporated in the analysis. For 
example, if the normal operation of the rod necessitates the fulfillment of a 
condition (ay - a max ) > 0, where ay is the yield limit of the material of the 
rod and a max is the maximum stress in the rod, then at random a max and 
with due account of the possible scatters a y it is required to determine the 
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Fig. 1.6. 

probability that the inequality will be satisfied, i.e. P [(O"y - O"max) > 0]. We 
can get numerical value of only when we have the probability characteristics 
of O"max that can be obtained solely from the solution of the equation of the 
random longitudinal vibrations of the rod. 

A variable cross-section shaft with a lumped mass whose moment of iner­
tia with respect to an axis z is equal to Jz is shown in Fig. 7.6 b. The shaft is 
loaded with a random distributed moment Ji-z (t) and a random concentrated 
moment M z (t). At the random torsional vibrations of the shaft random shear 
stresses arise. To estimate the normal operation of the shaft, it is necessary 
to determine the probability of failure-free operation P [(7"1/ - 7"max) > 0] the 
way we did it with respect to the previous example. 

7.2 Equations of Small Vibrations 

The equations of the small vibrations of a string, of the longitudinal vibra­
tions of a rod and of the torsional vibrations of a shaft belong to the same 
class of the partial differential equations and are classified among equations 
of the hyperbolic type. Monographs and textbooks on equations of math­
ematical physics contain equations that do not take into account lumped 
masses and concentrated forces . These scientific papers and educational sup­
plies are mainly devoted to wave equations or equations pertaining to cases 
where forces acting on a string, rod or shaft are distributed through to its 
whole length. The cited examples (Fig. 7.1-7.6) show that real problems can 
be much more intricate than the classical ones presented in mathematical 
literature, to say nothing of the problems that are usually considered in 
monographs on the theory of vibrations. These equations presented with­
out a derivation for the most general cases, have the following form (with 
due account of viscous friction forces): 
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1. The equation of the transverse vibrations of an inhomogeneous string 
that has a lumped mass m and is loaded with an axial qz, and transverse 
.qy (z) distributed loads and a concentrated force Py (t) at the cross-section 
of the string Zl takes the following form 

(7.1) 

where y is the vertical displacement of the points of the axial line of the 
string, 8 (z - Zl) ,8 (z - Zk) are the Dirac delta functions, a is the coefficient 
of the viscous friction force. This force approximately takes into account 
all energy losses at vibrations dependent on the resistance of the external 
medium, hysteresis etc. 

The distributions of the loads qz and qy are not shown in Fig. 7.1 a. 
The axial force QlO (z) and ml (z) mass of string unit length are con­

sidered known. Let us obtain the equation of small vibrations for a moving 
string (tape) {Fig. 7.4) and for a hose filled with a flow of fluid {Fig. 7.5). 

An element of a liquid-filled hose is shown in Fig. 7.5 b. At vibrations the 
inertia forces dJ1 and dJ2 equal to 

(7.2) 

act on the element, where ml is the mass of the hoses unit length, m2 is the 
mass of the liquid in the hoses unit length. By projecting all forces applied 
to the element of the hose on the axis Y, we obtain 

{Py 
where da = {JZ2 dz. 

(7.3) 

In order to obtain the partial differential equation we must pass to La­
grangian or Euler variables used in the continuum mechanics. When solving 
problems that involve relative motion of mediums, Euler variables are most 
effective. Passing in (7.2) to Euler variables, we obtain 

d2y ({J2 y {J2y {J2y) 
m2 dt2 = m2 {Jt2 + 2w {Jz8t + w2 8t2 . 

Therefore by transformations we obtain from (7.3) the following equation 
(with due account of the viscous friction force) 
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The term containing the mixed derivative is the Coriolis force. From equation 
(7.4) we obtain as a special case at ml = 0, P = 0 the equation of tape 
vibrations (Fig. 7.4 b) 

8 2 y 8y 82 y _ 2 8 2 y 
m2 at2 + a at + 2wm2 8z8t - (Q1O - m2w ) 8z2 ' (7.5) 

where m2 is the mass of the tape unit length. 
If the hose has a lumped mass m in the section with the coordinate Zk, and 

the force Py is applied at the section zp, the equation ofthe forced vibrations 
of the hose is 

8 2 y 8y 82 y 82 y 
(ml + m2) at2 + a 8t + 2wm2 8zat + m 8z2 ~ (z - Zk) 

_ (1) 82 y 
- Q10 8z2 + Py~(z - zp), (7.6) 

where Q~~ = Q10 - (pF + m2w2) . 
2. The equation of the longitudinal vibrations of a variable cross-section 

rod with a lumped mass m and loaded with distributed and concentrated 
loads (Fig. 7.7 a) is 

a) 

z 

, 
\.----[---..;"""11 

b) 

Fig. 7.7. 
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(7.7) 

where u is the longitudinal displacement of the rods section (displacement 
of the points of the axial line of the rod at vibrations), F is the rod cross­
sectional area, E is the elastic modulus of the first kind. 

3. The equation of the torsional vibrations of a variable cross-section shaft 
with a lumped mass and distributed and concentrated moments (Fig. 7.7 b): 

(7.8) 

where cp is the angle of rotation of cross-section of the shaft, J z (z) is the 
polar moment of inertia of the circular cross-section shaft (we have a simi­
lar geometric characteristic of the section Jk for a non-circular cross-section 
shaft), G is the elastic modulus ofthe second kind, Iz is the physical moment 
of inertia of the lumped mass with respect to the central axis coinciding with 
the axis Z, P is the density of the shafts material. If the external load is ab­
sent, equations (7.1) - (7.8) describe free vibrations caused, for example, by 
the displacement of the points of the axial line of the string at the initial time 
instant. It is very difficult to obtain the solutions of equations (7.1)-(7.8) in 
analytical form (except for special cases), particularly when the forces ap­
plied at arbitrary sections vary in time. The method of initial parameters 
generally used in solving problems related to the necessity of joining sections 
lest the lumped masses and concentrated forces should explicitly enter into 
the equations, results in very cumbersome final results. Therefore in what 
follows we use, during the analysis of the random vibrations of systems with 
distributed parameters, both exact methods allowing us to obtain a solution 
in analytical form and approximate methods, the latter being preferable be­
cause they make it possible to obtain the numerical values of the solutions of 
complex problems. 

Let us consider the non-stationary vibrations of a string having a mass 
m (Fig. 7.2 a) that moves on it with a constant velocity v. We consider that 
the probability characteristics of the random aerodynamic force Fy (t) acting 
on the mass m are known, i.e. the mathematical expectation mp (t) and the 
autocorrelation function Kp (t, tf) are known. It is required to determine the 
greatest possible accelerations of the mass m, assuming that the distribution 
law of the acceleration is normal. We obtain the equation of the small vi­
brations of the system from (7.1) at ml = const, Q10 = const, qy = O. The 
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following three forces act on the mass m: 1) the force of gravity mg; 2) the 

aerodynamic force Fy (t) and 3) the force of inertia -m d2~ I ' therefore 
dt z=z" 

(7.9) 

Therefore from (7.9) we obtain 

82y 8y 82y 
L (y) = (mo + mc5k) 8t2 + a 8t + 2mv 8z 8t 15k 

82y 
- (QlO - mv2c5k) 8z2 - Fyc5k = o. (7.10) 

7.3 Solving Equations of Small Vibrations 

Let us find an approximate solution of equation (7.10), assuming that 

n . 
'"' . 7rJZ y= ~Ii(t)sm-l-
j=l 

(7.11) 

Let us take the possible displacements as 

n . 

15 '"' 15 . 7rJZ Y = ~ ajsm-l-· 
j=1 

(7.12) 

Having used the virtual work principle, we obtain the system of equations 

I 

/ L(y) sin 7r~Z dz, 

o 

(11=1,2, ... ,n). (7.13) 

By rearrangements with due account of the properties of the delta­
functions we obtain the system of equations in unknown functions Ii (t) 

n 

I: [a..,j (t) jj + b..,j (t) jj + c..,j (t) fj] = b..,Fy, (II = 1,2, ... , n). (7.14) 
j=1 

For example, confining ourselves to a two-term approximation we obtain the 
following expressions for coefficients a..,j, b..,j, c..,j and b..,. 
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or 

z . 27rvt . 27rvt . 7rvt 
all = m0"2 + msm -Z-; a12 = mSln -Z- sm -z-; 

. 7rvt . 27rvt Z. 2 27rvt 
a21 = mSln -Z- sm -Z-; a22 = m0"2 + msm -Z-; 

Z ( 7r ) 27rvt 7rvt 
bll = 0!"2 + 2mv T cos -Z- sin -Z-; 

( 27r ) 27rvt 7rvt 
b12 = 2mv T cos -Z- sin -Z-; 

( 7r ) 7rvt 7rvt 
b21 = 2mv T cos -Z- sin -Z-; 

Z ( 27r ) 27rvt 27rvt 
b22 = 0!"2 + 2mv T cos -Z- sin -Z-; 

( 7r ) 2 2 (7r) 2 . 2 7rvt 
Cll = QlO T - mv T sm -Z-; 

2 (7r) 2 . 27rvt . 7rvt 
C12=-mv T sln-Z-sm-Z-; 

2 (V) 2 7rvt 27rvt 
C21 = -mv I sin -Z- sin -Z-; 

Z (27r) 2 2 (27r) 2 . 2 27rvt 
C22=QlO- - -mv - sm-· 

2 Z Z Z ' 

7rvt 27rvt 
b1 = Fy sin -z-; b2 = Fy sin -Z-· 

In vector form the system of equations (7.14) is 

A (t) f + B (t) f + C (t) f = bo 

<i> + D (t) <P = b, 

where 

(7.15) 

(7.16) 

Equation (7.16) is a linear one with time-dependent coefficients. Therefore 
we can solve this equation only numerically. In the considered problem the 

time of process is limited (0 :S t :S ~). That is why at any random stationary 
v 

or non-stationary aerodynamic force the vibrations of the mass mare non-
stationary. 
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The solution of equation (7.15) at zero initial data is 

t 

~ = / G(t, tdb(tl)dh; (G(t, t1)) = K(t)K-1 (td, (7.17) 
o 

where K (t) is the fundamental matrix of the solutions of homogeneous equa­
tion (7.16). The matrixes K (t) and K- 1 (t) are determined by numerical 
methods. 

From equation (7.16) we determine the derivative of the vector ~ 

t 

~ = - / D(t)G(t, tl)b(h) dtl + b(t), 
o 

Then we determine the second derivatives il and i2 

t 

il = - / [qU (t, tl) bOl (t) + q12 (t, tl) b02 (t)] Fy (tl) dtl + b01 Fy (t); 
o 

t 

i2 = - / [q21 (t, h) bOl (t) + q22 (t, tl) b02 (t)] Fy (tl) dtl + b02 Fy (t), 
o 

where qij are the elements of the matrix D (t) K (t) K-l (tl)' 

(1) . 7rvh (1) . 27rVt1 
b01 = all (tl) sm -z- + a12 (td sm -z-; 

(1) . 7rvtl (1) . 27rVtl 
b02 =a21 (td sm - Z-+ a22 (t1)sm-Z-' 

(a~;) (h) are the elements of the matrix (A- 1 (t1))' 
The acceleration of the mass m is equal to 

.. 7rZ .. 27rz 
ii (z, t) = h sin T + 12 sin -Z-

or 

t 

ii (z, t) = - / q (t, t', z)fy (tr) dtr + b (t, z) F (t), 
o 

(7.18) 

(7.19) 
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where 

q (t, tl, Z) = (qll sin ~z + q21 sin 2~Z) bOI 

+ (q21 sin ~z + q22 sin 2~Z) b02 , 

7rZ 27rz 
b (t, z) = bOI sin T + b02 sin -z-· 

We determine the mathematical expectation of the acceleration my (t, z), 
and the correlation function Ky (t, t') 

t 

my (t, z) = / q (t, tl, z) my (tl) dtl + b (t, z) my (t), 
o 

t t' 

Ky(t, t', z) = / / q(t,t!,z)q(t',t2)Ky(tl,t2)dtldt2 
o 0 

t 

-b(t',z) / q(t,tl,z)Ky(t',t1)dt1 

o 
t' 

- b (t, z) / q (t', t2, z) Ky (t, t2) dt2 
o 

+ b (t!, z) b (t', z) Ky (t, t'). 

Assuming that t' = t, we obtain the variance of the acceleration 

Dy (t, z) = Ky (t, t', z) It'=t. 

(7.20) 

(7.21) 

(7.22) 

Assuming discrete values tj (0::; t ::; tk), we numerically determine my (tj, z) 
and (Ty (tj, z) . 

Having used the three sigma rule, we obtain the maximum value of the 
acceleration for the given velocity 

(7.23) 

The qualitative behaviour of the variation of the maximum acceleration 
with the coordinate Z (at fixed tj) is shown in Fig. 7.8. In its turn, the max­
imum values of the acceleration maxy(tj,z) for each instant tj reach their 
maximum also on the coordinate Z (Fig. 7.8). Therefore, during the motion 
of the mass m on the section 0 ::; z ::; Z the greatest possible acceleration is 
y* that is equal (at a given velocity v ) to 
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y. = max (max y (tj, t)) ; 
o ~ t ~ t; 
o ~ z ~ l. 

I z 

Fig. 7.S. 

Let us consider the stationary vibrations of a hose (Fig. 7.5) caused by 
a stationary kinematic excitation with known probability characteristics: 
mYk = 0, BYk (w). Let us determine the spectral density of the vertical dis­
placements of the points of the axial line of the hose (By (w, z)) and the 
maximum value of a concentrated random force that arises in a section K, 
considering that this force has normal distribution. Let us introduce an un­
known concentrated force Py (t) in the section K where the forced displace­
ment occurs. Let us take advantage of equation (7.6), assuming that m = 0 

{Py oy o2y _ (1) o2y 
(m1 + m2) ot2 + a ot + 2wm2 ozOt - QlO oz2 + Py (t) 15 (z - Zk), 

( Qi~) = QlO - (pF + m2 W2) ) . 
(7.24) 

For the approximate solution of equation (7.24) we assume that 

n . 

y = "I:Jj (t) sin 1r~Z . 
3=1 

(7.25) 

Substituting (7.25) into equation (7.24) and using the virtual work principle, 
we obtain the following system of differential equations 

n 

L (aij]j + bijjj + Cij!j) = biPy (t), (i = 1, 2, ... , n). (7.26) 
j=l 

Taking advantage of the Fourier transform, we obtain a system of alge­
braic equations 
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n 

L (aij (iW)2 bij (iw) + Cij (iW)) Pj (iw) = biPOy (iw) , (7.27) 
j=1 

where bij and Cij are constant coefficients dependent on the velocity of the 
liquid wand on the liquid pressure p. 

Let us determine Pj (iw) from system of equations (7.27) 

Pj (iw) = Wj (iw) POy (iw). (7.28) 

The approximate expression for (7.25) in the frequency area takes the form 

n . 

Y (z, iw) = L Pj (iw) sin 1f~z. 
j=1 

Eliminating Pj (iw) from (7.29), we have 

n . 

Y (z, iw) = L Wj (iw) PYa (iw) sin 1f~z. 
j=1 

(7.29) 

(7.30) 

We determine the introduced unknown force (image of the force py) from 
the following condition 

(7.31 ) 

where Yk (iw) is the image of the displacement of the point k. We obtain the 
following equation for the determination of POy (iw) 

Yk (iw) = (t Wj (iw) sin 1f jtk) POy (iw) , 
)=1 

Therefore, 

Yk (iw) 
POy (iw) = -(-;------'---'---):-­

~ . . 1fjZk 
~ Wj (zw)sm-l 

As a result we obtain Y (z, iw) 

(7.32) 

(7.33) 

(7.34) 
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or 

Y (z, iw) = W (z, iw) Yk (iw). (7.35) 

The spectral density of the vertical displacements of the points of the hose 
axial line and the variance of displacements are equal to 

Sy (w, z) = IW (z, iw)12 SYk (W), (7.36) 
00 

Dy (z) = ! IW (z, iw)12 SYk (w)dw. (7.37) 

-00 

Let us determine the variance of the concentrated force Py originating in 
the section k. We find the spectral density Spy (w) from (7.33) 

where 

1 
WI = n . 

~ . . 7fJ Zk 
L Wj (zw)sm-Z-
j=I 

The variance of the force Py is equal to 

00 

Dpy = ! IWI I2 SYk (w) dw. 
-00 

The greatest possible value of Py (at mpy = 0) is equal to 

maxPy = 3JDpy. 

(7.38) 

(7.39) 

3. A missile (Fig. 7.9) moves with an increasing velocity in a bore of a 
barrel. The force of friction between the missile and the barrel is equal to 
P = Po + L1P (t). Owing to the possible momentary sticking of the surface 
of the missile to the surface of the bore or to the reduction of the contact 
pressure the force P has a random component L1P (t). One of the realizations 
of the stochastic function L1P (t) is shown in Fig. 7.10. 

It is required to determine the variance of the random component of 
the stress L10" in the bore at the moment of the missile exit. To simplify 
calculations we shall consider that the velocity of the missile linearly depends 
on time, i.e. v = at, where a is the constant acceleration. 

At t = 0 the body is in the origin. Let us determine the correlation 
function KLlP (t) considering that the random function L1P (t) is stationary. 
The product of two values of the function L1P (t) and L1P (t + T) depends on 
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Fig. 7.9. 
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Fig. 7.10. 

whether the time instants t and t + r are in the same interval Tk or not. If 
they are, 

(7.40) 

and, if they are not, 

(7.41) 

In order to obtain the correlation function we must add together products 
(7.40) and (7.41) averaged over a set of values and multiplied by appropriate 
probabilities, for which purpose it is necessary to find the probability that a 
section of the length r completely falls within the interval Tk. This probability 
is equal to the probability that on a randomly taken span r of the time axis 
there is not a single point of the discontinuity of the function L1P (t). If we 
know the distribution function of the zeros (discontinuities) of the function 
L1P (t) on the interval r as a function of the length of this interval, it is 
possible to find the probability P (n, r) of the number of zeros of the function 
L1P (t) , where n is the number of zeros. The probability that there will be 
not a single discontinuity of the function L1P (t) on the interval r is equal to 
P (0, r). If we assume that the number of the discontinuities of the function 
L1P (t) on any time span r follows the Poisson distribution law 

P (n r) = (J.Lrt e-J1.T 
, I ' n. 
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where f.l is the average frequency of discontinuities which is considered known, 
the probability is P (0, T) = e-W . 

The probability that the interval T exceeds the interval Tk (Le. the time 
instants t and t + T are in different intervals Tk ) is equal to 1 - P (0, T). 

Hence, the correlation function takes the form 

Considering that .t1Pk and .t1Pi are independent and have the same dis­
tribution, we obtain 

The spectral density .t1P is 

-00 

The equation of the longitudinal vibrations of a constant cross-section rod 
with due account of the moving concentrated force (we ignore the resistance 
force) takes the form 

cPu cPu (at2 ) 
m1 at2 = EFo oz2 +.t1P (t) 0 z -""2 . (7.42) 

Assuming that in (7.42) 

'" . 7rjz 
U = L Ii (t) Slll2f' 

j=1,3 ... 

o z- - = C·Sln-( at2) L . 7rjz 
2 J 2l' 

j=1,3, ... 

we obtain after transformations equations for the determination of the func­
tions fj (t): 

2 2 . 7rjat2 
fj + PjIi = -l.t1P (t) slll-l-' 

ml 4 
( p2 = (7rj )2 EFo) . 

J 2l ml 
(7.43) 

The solution of equation (7.43) at zero initial conditions is 

(7.44) 
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As a result, we obtain the solution of equation (7.42) 

t 
~ 2 7rjz j 7rjar2 

u = ~ -Z- sin -Z sin Pj (t - r) sin --Z- LlP (r) dr. 
. Pj m1 2 4 

J=1,3. . . 0 

(7.45) 

The stress in the sections of the rod caused only by the random force 
LlP (t) is 

t 
au E7rj 7rjz j . . 7rjar2 

Lla = E ';:'z = L -Z2- cos -2Z smpj (t - r) sm --Z-LlP (r) dr. 
u P.i m1 4 

j=l~. . . 0 

The variance of the stress is 

~ ~ E2 (7rj)2 7rjz 7rkz jt jt . 
D,c,u = . ~ ~ PjPk Z4mi cos 2z cos 2z smpj (t - r) 

J=1,3 ... k=1,3. .. 0 0 

. 7rjar2 . . 7rkarr 
x sm ~ smpk (t - r1)sm -2-Z-K,c,pdrdr1. (7.46) 

In order to determine the variances of the stress at the instant of the 
missile exit out of the bore of the barrel we must take the upper limit of 
integration in expression (7.46) equal to 

4. In order to average the misalignments of the thrust R of the engine 
of a rocket the latter is set into rotation (Fig. 7.11) when leaving the guides. 
In order to set the rocket into rotation there are rotation engines 1 that are 
ignited at the moment of leaving (this moment can be taken for the initial 
one). The rotation engines produce a moment with respect to the longitudinal 
axis. This moment has a constant component Mo and a random component 
LlM (t) (M = Mo + LlM (t)) . The random component can be considered as 

• AM(f) 

R 

z 

1 / 

Fig. 7.11. 
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a random stationary function with a known spectral density S (w). As a 
result of the action of a random twisting moment .:1.M (t) some torsional 
vibrations of the rocket take place introducing errors in the readings of the 
instruments of the control system. In order to estimate the possible errors 
of the instruments due to the random torsional vibrations we must know 
the probability characteristics of the torsional vibrations and, in particular, 
the variance of the angular acceleration in those cross-sections of the rocket 
where appropriate instruments are located. 

Assuming that the random torsional vibrations of the rocket are station­
ary, it is required to determine the variance of the angular acceleration of the 
rocket. When solving the problem, we shall confine ourselves to the simplest 
case where pJo = const and GJo = const. The equation of the random tor­
sional vibrations of the rocket with due account of the viscous friction takes 
the form (a particular case of equation (4.57)) 

f)2 cp 8cp 82 cp 
Jop 8t2 + 0i7ii = JoG 8z2 +.:1.M (t) 6 (z) . (7.47) 

Here the eigenfunctions of the free torsional vibrations of the rod are equal 
nnz 8cp 

to cos -l- (as the boundary conditions take the form: 1) z = 0; 8z = 0; 

2) z = l; :~ = O. Therefore, assuming that in (7.47) 

00 • 00 • 

'" nJz cp = ~1; (t) cos -l-; 
j=l 

'" nJz 6 (z) = ~ Cj cos -l-; 
j=l 

(7.48) 

Substituting the expression (7.48) for cp into equation (7.47) and using 
the virtual work principle we obtain by rearrangements the following system 
of equations in 1; (t) 

.. Oi· 2 i 2 
1; + ~ 1; + Pjli = (-1) -:r-l.:1.M (t), 

JOP JOP 
(7.49) 

where 

p2 = G (nj)2 
3 P l 

Obtained equations (7.48) are similar to those of (4.40), therefore the 
spectral density of solution (7.48) is 

S", (w) = IWl2 SaM (w) , 

where 

. njz 
00 2 ( _1)3 cos -L l 

j=l Jopl ( _w2 + ;iW + P~ ) 

2 
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The variance of the angular acceleration is 

00 

D", = / IWl2 W4SL1M (W) dw. (7.50) 

-00 
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8. Random Vibrations of Rods 

In the previous chapter the most simple problems related to systems with 
distributed parameters have been considered. 

Rod elements of machines, devices and structures belong to more complex 
systems with distributed parameters as we usually have to consider systems 
of partial differential equations when solving problems of the statics and 
dynamics of rod systems. Elastic rod and structural elements considered as 
rods in design practice are given as examples in Figs. 8.1-8.4. Two elastic rod 
elements of devices: a cylindrical (Fig. 8.1 a) spring and a spiral (Fig. 8.1 b) 
spring are shown in Fig. 8.1 a, b. If the devices using these elements are placed 
in an object moving with acceleration, a random acceleration a c (t) acts on 
these elements due to the scatter of the engines thrust. As real elastic elements 
have a mass, occuring random vibrations can lead to substantial errors in the 
operation of these devices. The shock absorption system of a mass m with the 
use of a conic spring is shown in Fig. 8.1 c. At a random kinematic excitation 
(Yk (t)) random vibrations take place. The order of the mass m can be the 
same as that of the mass of the spring. Therefore, in order to determine the 
probability characteristics of the displacement of the mass m and its first 

fJlJH!lB -, 
a) 

b) c) 
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v --------
Fig. 8.2. 

derivatives y (iJ , jj) it is necessary to consider the spring as a system with 
distributed parameters. 

A mast with an aerial located in an air flow whose velocity has a random 
component is shown in Fig. 8.2. Random aerodynamic forces act on the mast 
and the aerial (a concentrated force F acts on the aerial and a distributed 
force q acts on the mast) which causes random vibrations of the system. 
The random characteristics of the rotation angle of the aerials beam are of 
interest in the process of designing because they influence the accuracy of the 
reception or transfer of signals. 

A curved section of a pipeline filled with a moving liquid, for example, 
a section of an aircraft engines onboard feed system that involves pipeline­
section mountings connected with different foundations, is shown in Fig. 8.3. 
The pipeline has a local hinged constraint (section k) with a random dis­
placement (Uk (t)), which causes some random kinematic vibrations of the 
pipeline. 

A pipeline intended for lifting structures from the bottom of the sea is 
shown in Fig. 8.4. The random rolling of the ship results in the random dis-

Fig. 8.3. 
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- - - - -- - - - - - -
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Fig. 8.4. 

placement of a point k (Uk (t)), which leads to the random kinematically 
induced vibrations of the pipeline. 

8.1 Nonlinear Equations of Motion of 
Three-Dimensional Curvilinear Rods 

A rod at an arbitrary time instant is shown in Fig. 8.5 a and an element of the 
rod with forces and moments applied to it is given in Fig. 8.5 b. In addition 
to these forces, an inertia force dJu 

Fig. 8.5. 
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( V = dU) 
dt ' 

(8.1) 

and a moment of inertia (if we take the rotary inertia of the rod element into 
account) 

d 
dlLa = - dt (Jw) ds, (8.2) 

where J is the diagonal matrix whose elements are the principal physical 
moments of inertia of the rods element the length of which is equal to unity 

[
Jl1 0 01 

J = 0 J22 0 
o 0 J33 

(8.3) 

act on the element of the rod at its motion. 
For a variable cross-section rod Jii depends on an arc coordinate s. Using 

the Lagrangian variables, we obtain (8.1) and (8.2) in partial derivatives 

au 
V=--' 

at' 
o 

dfL .. = - at (Jw) ds. (8.4) 

Taking advantage of d'Alembert's principle we obtain the following vector 
equations of the translatory motion and rotation of the rod element (confining 
ourselves to one concentrated force P and one concentrated moment T): 

Ov oQ 
rnl- = - +q+P8(s - So). ot os • , 
o oM 
at (Jw) = os +elxQ+IL+T8(s-sv), 

(8.5) 

(8.6) 

where Q is the vector of internal forces , M is the vector of internal moments, 
w, v are respectively the vector of the angular velocity and the vector of the 
linear velocity; 8 is the Dirac function, q, IL are vectors of distributed forces 
and moments respectively; P is the concentrated force applied in a section 
with coordinates Si; T is the concentrated moment. 

The matrix J has elements that do not depend on time only in the at­
tached coordinate system, therefore in equations (8.5) and (8.6) we pass to 
local derivatives 

(av ) aQ rno ot +w x v = as +rex Q+P; (8.7) 

aw aM 
Ja;+wxJw= os +rexM+elxQ+T, (8.8) 

where 
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T = /L + To (s - sv). 

In the general case the distributed and concentrated forces and moments 
can be presented as 

q = qo + qd + qc; 

/L = /Lo + /Ld + /Lc ; 

P = Po + P d + Pc; 

T=To+Td+Tc, 

where qo, Po, /Lo and To are the static loads; qd, Pd, /Ld and Td are the 
dynamic deterministic loads; qc, Pc, /Lc and Tc are the dynamic random 
loads. 

In what follows the tilde sign in the notation of the local derivative is 
dropped. The vector re entering into equations (8.7), (8.8) is 

3 

re = L re.;ei, 
i=l 

where reI is the twist of the axial line of the rod; re2, re3 are the curvatures 
of the projection of the rods axial line onto planes (eb e2) and (eb e3) that 
go through the principal axes of the cross-section of the rod. 

Very often in applied problems the rotary inertia of the rod is ignored 
(Jw :::::: 0), therefore 

8M 
8s + re x M + el x Q + T = o. (8.9) 

The vector M is connected with the vector re by the equation 

(8.10) 

where 

[
All 0 0 1 

A = 0 A22 0 
o 0 A33 

(8.11) 

All is the torsional rigidity of the rod and A22 , A33 are its flexural rigidities. 
The components of the vector rebl) are the twist ~o and curvatures re20, 

re30 of the rod axial line in the natural state in the attached axes with them 
simultaneously being the principal axes of the section. In the natural axes 
the vector re is the Darboux vector equal to 

(8.12) 

where ill is the twist of the rods axial line; il3 is its curvature. Therefore for 
a circular cross section rod (for which all axes are principal) we have 
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1 
rea = n3 = -, 

p 

where p is the radius of the curvature of the rods axial line. 

(8.13) 

For the displacements vector (u = r - ro) (Fig. 8.5) we have the following 
equation (in the attached axes) 

au as + re xu = e - elO· (8.14) 

Considering the derivatives of the unit vectors ei and eiO with respect to 
the axial coordinate, we can obtain an equation relating components of the 
vectors re and reo with the angles {) j: 

aD (1) 
re = L 1 - + Lreo as 

where 

L= 

cos {)2 cos {)3 cos {)2 sin {)3 cos {)1 + 
+ sin {)2 sin {)1 

- sin {)3 

sin {)2 sin {)3 cos {)1 -

- cos {)2 sin {)1 

L1 = - sin{)3 [

COS {)2 cos {)3 

1 0 . 

o - sin {)2] 

sin {)2 cos {)3 o COS{)2 

cos {)2 sin {)3 sin {)1 -

- sin {)2 cos {)l 

- sin {)2 sin {)3 sin {)1 + 
+ cos {)2 cos {)l 

(8.15) 

(8.16) 

(8.17) 

Considering the derivatives of unit attached basis vectors with respect to 
time, we can obtain the following equation 

(8.18) 

For an element of a moving rod we can obtain the following vector equation 
relating the vectors v and w: 

dv 
as = w x el· (8.19) 

Let us reduce equations (8.7)-(8.10), (8.15), (8.18), (8.19) to non-dimensional 
form, assuming that 
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s = IT]; T = Pot; 

M=M A33 (0). 
l ' 

Q = Q- A33 (0) . 
l2 ' 

- Ji (T]) 
Jii (T]) = FoP; 

w = wPo; v = vlpo; 

_ A33 (0) 
J.L = J.L l2 ; 

_ A33 (0) 
q= q-l-3-; Po = [ A33 (0) ] t . 

ml (0) l4 ' 

re = rel, 

where m1 (0) is the mass of the unit length of the rod in the origin; A33 (0) 
is the rigidity of the rod in the origin; w, v, etc. are the non-dimensional 
quantities. We may present the mass of the unit length of the rod in its 
arbitrary section in terms of m1 (0) as 

where n1 (T]) is the non-dimensional function; Fo is the area of the rod's 
section in the origin. 

We obtain the following system of the differential nonlinear equations of 
motion of the rod in non-dimensional form (dropping the tilde sign in the 
notation of local derivatives and non-dimensional quantities): 

n1 (T]) (~; + w xv) - ~~ - re x Q - P = 0; 

ow aM 
J (T]) - + w x J (T]) w - - - re x M - e1 x Q - T = 0 

aT aT] 

M=A(re-re~l)); 
of} (1) 

L1 aT] + Lreo - re = 0; 

of} 
aT] + re x v - w x e1 = 0; 

AU 
aT] + re x u - (1 -In) e1 - h1 e2 -l31e3 = 0 

of} 
L 1--w=0 

aT ' 

where iij are the elements of the matrix L. 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

From equations (8.20)-(8.26) we can obtain as a special case the following 
nonlinear equations of the rods equilibrium: 
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dQ 
d1] + ce X Q + P = 0; 

dM 
d1] + ce x M + e x Q + T = 0; 

M = A (ce - ce~l») ; (8.27) 

dO (1) 
L1 d1] + LceO - ce = 0; 

du 
d1] + ce x u - e1 + elO = o. 

Let us consider expression (8.22) for the moment M in more detail. In the 
presented form ce~l) is a vector whose components are curvatures describing 

the natural state of the rod. If the vector ce~l) characterizes the static state 
of the rod, then 

( (1») M = A ce - ceo + M o, (8.28) 

where Mo is the static moment. 

8.2 Equations of the Motion of a Rod in the Attached 
Coordinate System 

8.2.1 Equation of Space Motion of a Rod 

In tensor form system of equations (8.20)-(8.26) takes the form 

(
aVk ) aQk • 

n1 (1]) aT + CkijWiVi - a1] - CkijH:liQj - Pk = 0; 

o aw-y 0 aMk _ . 
Jk-y aT + CkijWiJj-yW-y - a1] - CkijH:liMj + CkijQi - Tk - 0, 

at)· 
l(l)kj a; - H:lk + lkjH:lOj = 0; 

aUk 
a1] + CkijH:liUj - 81k + lk1 = 0; 

(8.29) 

aVk 
a1] + CkijH:liUj - Cki1Wi = 0; 

at)· 
l(l)kj a: - Wk = o. 
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Written in an expanded form in projections ontj the attached axes the system 
is: 

(8.30) 

8Wl 8Ml 
J u 87 + (h3 - J 22 ) W2W3 - 8"., + <£3 M 2 - <£2 M 3 - Tl = OJ 

8W2 8M2 
J22 87 + (J11 - h3) WlW3 - 8"., + <£lM3 - <£3 M l + Q3 - T2 = 0; (8.31) 

8W3 8M3 
h3 87 + (J22 - J11 ) WlW2 - 8"., + re2Ml - <£lM2 - Q2 - T3 = 0, 

Ml = Au (reI - relO) j M2 = A22 (<£2 - re20) j M3 = A3l (<£3 - <£30), 

(8.32) 

8fh 8fh 
l(1)u 8"., + l(1)13 a"., - <£1 - ll1<£l0 + h2<£20 + h3C£s0 = OJ 

afh 8fh 
l(1)2l 8"., + a"., - <£2 + l21<£10 + l22<£20 -l23<£30 = OJ (8.33) 

afh afh 
l(1)31 8"., + l(1)33 a"., - <£3 + l31<£10 + l32<£20 + is3C£s0 = 0, 

aV1 
7};] + V3<£2 - V2 re3 = OJ 

aV2 
7};] + VI <£3 - V3 rel = W3j (8.34) 

aV3 
8"., + V2 re1 - V1 re2 = -W2· 

aUl 
8"., + <£2U3 - re3U2 - 1 + ll1 = OJ 

aU2 
8"., + <£3U l - re1u3 + hI = OJ (8.35) 

aU3 
a"., + <£1 U2 - <£2U1 + l31 = O. 
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(8.36) 

8.2.2 Equation of Plane Motion of a Rod 

Let us consider the special case of a rod in its natural state having the axial 
line that lies in a plane and one of the principal axes of its section being 
perpendicular to this plane. During the plane motion of the rod a number of 
the components of the vectors entering into equations (4.39)-(4.44), vanish: 

U3 = V3 = WI = W2 = OJ 

eel = ~ = eelO = ee20 = OJ 

Q3 = MI = M3 = OJ q3 = J.LI = J.L3 = O. 

From systems (4.30)-(4.36) we obtain the following equations: 

nl (ry) (aVI _ V2W3) - aQI + ee3Q2 - PI = OJ 
aT ary 

nl (ry) ( aV2 + VIW3) - OQ2 - ee3QI - P2 = O. 
OT ory 

OW3 OM3 
h3- - -- - Q2 - T3 = O. 

OT ory 
M3 = A33 (ee3 - ee30)' 

o{h 
ory - ee3 = OJ 

OVI 
ory - V2 ee3 = OJ 

OV2 
ory + vlee3 = W3j 

(W3 = ~3). 

(8.37) 

(8.38) 

(8.39) 

(8.40) 

From system (8.35) we obtain two equations for the determination of 
displacements in the attached frame 

OUI ory - ee3 U2 - 1 + COS{)3 = OJ 

OU2 '.Q 0 - + a13UI + sm V3 = . ory 

(8.41) 
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8 .2.3 Rods Having Lumped Masses 

A rod having lumped masses, a point mass ml and inertial mass m2 is shown 
in Fig. 8.6. during the vibrations of the rod the lumped masses are subjected 
to the action of forces of inertia Jt) and a moment of inertia M~2) that we 
can enter into equations of motion using delta functions the way we did it 
with concentrated forces . Changed into non-dimensional form the force of 
inertia Jt) and the moment M~2) are 

to 

(8.42) 

(8.43) 

In the attached frame we have (the sign of local derivative is dropped) 

J~l) = -m? (:: + w x v) <5 (1] -1]1); 

J~2) = -mg (:: + w x v) <5 (1] -1]2); 

M~2) = - (J(2) ~~ + w x J(2)w) <5 (1] -1]2)' 

(8.44) 

(8.45) 

(8.46) 

In given expressions (8.42)-(8.46) m? are non-dimensional masses equal 

where mo is the mass of the rods unit length; I is the length of the rod; J(2) 
is the matrix, whose elements are the non-dimensional moments of inertia of 
the mass m2 . If the principal axes of the sections of the rod coincide with 

Fig. 8.6. 



www.manaraa.com

290 8. Random Vibrations of Rods 

those of the lumped mass m2, the matrix J(2) is a diagonal one (similar to 
that of (8.3)). If the principal axes of the sections of the rod do not coincide 
with those of the lumped mass (the movable axes are connected with the 
principal axes of the rod's sections) the matrix J(2) takes the form 

[
J(2) J(2) J(2)] 11 12 13 

J (2) _ JP) ],(2) J(2) 
- 21 22 23 . 

J(2) J(2) J(2) 
31 32 33 

The non-dimensional elements of the matrix J(2) are connected with its di­
mensional ones by the following relationships 

( J(2») 
J~~) = ij 1 

tJ moP' 

where Ji~)' (Ji~») 1 are respectively non-dimensional and dimensional quan­

tities. The presented expressions for Jt2) and Mt2) are true provided that we 
can ignore the size of the mass m2 along the coordinate 7J in comparison with 
the total length of the rod. On this assumption we can put a number of the 
elements of the matrix J(2) equal to zero, namely 

Jg) = Jg) = J~~) = J~~) = o. 

Having included the concentrated forces of inertia J~2) and Mt2) in equations 
(8.20) and (8.21), we obtain equations of motion of the rod that take the 
lumped masses into account: 

[J(7J)+J(2)ci(7J-7J2)] ~~ +wx [J(7J)+J(2)ci(7J-7J2)]W 

8M 
- 87J - re x M - el x Q - T = o. 

Other equations of system (8.20)-(8.26) remain unaltered. 

8.3 Equation of Small Vibrations of Rods 

(8.47) 

(8.48) 

Let us obtain equations of the small vibrations of a rod about an equilibrium 
state, assuming that additional internal forces, displacements and angles of 
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rotation that occur at vibrations are small, which is possible at small external 
dynamic loads. 

Let us assume that: 

Q = Qo + ..1Qj M = Mo + ..1Mj 

P = Po + ..1Pj T=To+..1Tj 

~= ~o+..1~j 

q = qo + ..1qj 

1.1. = 1.1.0 + ..1l.I.j v = ..1vj u = ..1uj W = ..1w, 

iJ = ..1iJj 

(8.49) 

where Qo, Mo, ~o, qo, 1.1.0 are static components and ..1Q, ..1M, ..1~, ..1q, 
..11.1., ..1v, ..1u, ..1w are vectors whose components are considered to be small 
quantities, therefore we can ignore their products (vector and scalar ones). 
We consider small vibrations about an equilibrium state, therefore 

M=Mo+..1M, 

where ..1M = A . ..1~j ..1~ = ~ _ ~~l) . 
Since 

8u 
v = 8T +w xu, 

then at small vibrations we can put w x u ~ O. Therefore 

8u au 
V=-=-. 

8T 8T 

(8.50) 

At the small angles of rotation {Ji of the attached axes with respect to their 
position in statics the vector is 

aiJ 
W= 8T' (8.51) 

Let us obtain equations of small vibrations of a rod in the attached axes using 
equations (8.20)-(8.26). Substituting expression (8.49) into these equations 
and retaining only the terms linearly dependent on small quantities, we obtain 
the following vector equations in the attached frame 

82u 8..1Q 
nl (1]) 8T2 - a:;} - ..1~ x Qo - reo x ..1Q = Pj 

82 iJ 8..1M 
J- - -- - ..1~ x Mo - ~o x ..1M - el x LlQ = T· 8T2 a1] , 
..1M = A..1~j (8.52) 

aiJ 
8"1 + ~o x iJ - ..1~ = OJ 

au 
a'TJ + ~o x u - {J3e2 + {J2e3 = 0, 
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Let us consider vector products Llre x Qo, Llre x Mo, that can be presented 
as 

Llre x Qo = AQLlrej Llre x Mo = AM Llre, (8.53) 

where 

(8.54) 

Similarly we obtain expressions for the other vector products entering into 
system (8.52). By transformations (having eliminated Llre) we obtain the fol­
lowing system of equations of small vibrations of a three-dimensional curvi­
linear rod 

02U oLlQ 1 
n1 ("1) or2 - a:;;- - AQA- LlM + AceLlQ = Pj 

02iJ oLlQ -1 
J- - -- - AMA LlM - AceLlM - A1LlQ = Tj 

or2 0"1 
oiJ -1 
0"1 + AreiJ - A LlM = OJ 

au 
0"1 + Areu + A1iJ = 0, 

(LlM = ALlre) . 

where 

- ce30 

o [
00 0 1 A1 = 00-1. 
01 0 

(8.55) 

We can write system of equations (4.127) in the form of one vector equation 
(having eliminated Llre) 

(8.56) 

where 

[
00 0 -n1Ej 

A(1)= OO-J 0 . 
00 0 0 ' 
00 0 0 
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If we put ! = 0, then from (8.56) we obtain the following linear equation 

of a rods equilibrium 

(8.57) 

where ~o depends on the static load. 

8.3.1 Equations of Small Vibrations in the Attached Coordinate 
Frame 

From equations (8.55) we obtain equations of small forced random vibrations 
in the attached coordinate frame: 

82ul 8..1.Ql 
nl 8T2 - a:;;- + Q2o ..1.re3 - Q3o..1.re2 + re3o..1.Q2 - re2o ..1.Q2 = PI; 

82u2 8..1.Q2 . 
nl 8T2 - a:;;- + Q30..1.rel - QlO..1.re3 + relO..1.Q3 - re30..1.Ql = P2; (8.58) 

82u3 8..1.Q3 
nl 8T2 - a:;;- + QlO..1..'.e2 - Q2o ..1.rel + re2o..1.Ql - relO..1.Q2 = P3, 

82{h 8..1.M1 
J ll 8T2 -~-re2o..1.M3+re3o..1.M2-M3o..1..'.e2+M2o..1.re3=Tl; 

82{h 8..1.M2 
h2 8T2 -~-re3o..1.Ml+relO..1.M3-MlO..1.re3+M3o..1.rel+..1.Q3=T2; 

82{h 8..1.M3 
J33 8T2 -~-relO..1.M2+re2o..1.MI-M2o..1.rel +MlO ..1.re2-..1.Q2=T3, 

(8.59) 

8{h 
8ry + re2o'!93 - re30'!92 - ..1.rel = 0; 

8'!92 
8ry + re3o'!91 - relO'!93 - ..1.re2 = 0; (8.60) 

8{h 
8ry + relO'!92 - re20'!91 - ..1.re3 = 0, 
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8UI 
8ry + Ge20U3 - Ge30U2 = 0; 

8U2 
8ry + Ge30UI - GelOU3 - '193 = 0; (8.61) 

8U3 
8ry + GelOU2 - Ge20UI + '192 = 0, 

LlMI = AULlGeI' LlM2 = A22Ll~, LlM3 = A33LlGe3· (8.62) 

8.3.2 Equations of Small Vibrations About a Natural State 

Let us present the equations of small vibrations of rods about a natural state 
(non-loaded). In this special case we must put AQ = AM = 0 in equation 
(8.55). As a result we obtain: 

1) Vector equations 

8 2u 8LlQ 
ni (ry) 8T2 - ---a:ry - A,oeLlQ = P; 

82{) 8LlM 
J 8T2 - {);} - A,oeLlM - AILlQ = T; 

8{) 
8ry + A,oe{) - Llee = 0; 

(8.63) 

8u 
8ry + A,oeu + A I {) = 0; 

LlM = ALlee. 

Let us obtain equations of the small random vibrations of the rods the 
axial line of which is a plane curve. A spiral spring whose axial line both 
in a natural state (q = 0) and in a loaded state (q =1= 0) is a plane curve is 
shown as an example in Fig. 8.1 b. If we deflect the spring from its equilibrium 
state, it will begin to vibrate. If it is deflected in the plane of the drawing, 
small vibrations will occur in this plane; if the deflection of the spring is rela­
tive to the plane, small spatial vibrations will take place. The corresponding 
equations can be obtained from system (8.58)-(8.62), if we put 

Q30 = 0, MlO = lvI20 = 0, GelO = Ge20 = o. 

As a result, from the system of equations (8.58)-(8.62) we obtain the 
following equations of random forced vibrations in the attached frame: 

82UI 8LlQI 
ni 8T2 -~ + Q20LlGe3 + Ge30LlQ2 = PI; 

82u2 8LlQ2 
nl-- - -- - QlOLlGe3 - Ge30LlQI = P2 ; 

8T2 8T} 
(8.64) 

82U3 8LlQ3 
ni 8T2 -~ + QlOLlGe2 - Q20LlGeI = P3; 
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8th 
811 - aJ30'!?2 - LlaJl = 0; 

8'!?2 
811 + a"J30'!?l - Lla32 = 0; (8.66) 

8th _ Lla"J3 = 0; 
811 

8Ul 
811 - aJ30U2 = 0; 

8U2 
811 + aJ30Ul - '!?3 = 0; 

(8.67) 
8U 3 
811 + '!?2 = 0, 

LlMi = AiiLlaJi. 

If a random load [for example, qc (See Fig. 8.1 b)] acts in the plane of the 
drawing, i.e. 

system of equations (8.64)-(8.67) falls apart into two independent systems: 
1) In the plane of the drawing: 

82uI 8LlQI 
nl 8T2 - a:;;- + Q20 LlaJ3 + aJ30LlQ2 = PI; 

82u2 8LlQ2 
nl 8T2 - a:;;- - QlO LlaJ3 - aJ30LlQl = P2; 

8 2'!?3 8LlM3 
h3-- - -- - LlQ2 =T3; 

8T2 8T} 
8{h 
- - Lla"J3 = o· 
811 ' 

8Ul 
- - aJ30U2 = o· 
811 ' 
8U 2 - + aJ30Ul - '!?3 = o· 
811 ' 

(8.68) 
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2) Relative to the plane of the drawing: 

{PU3 OLlQ3 
nl 072 - ---a;;- + QlOLl~ - Q20Llrei = 0; 

02th oLlMI 
J ll 072 - -a;:;- + re30LlM2 - M30Ll~ = 0; 

02th oLlM2 
J22 072 - -a;:;- - re30LlMI + M30Llrei + LlQ3 = 0; 

WI aT! - re30'!?2 - Llrel = 0; 
(8.69) 

0'!?2 
aT! + re30'!?1 - Ll~ = 0; 

OU3 
aT! + '!?2 = 0; 

LlMI = AllLlreI, LlM2 = A22Ll~, 

In the case of free random vibrations of a non-loaded rod (at QlO = Q20 = 
= M30 = 0) from equations (8.68) and (8.69) we obtain the following equa­
tions: 

a) In the plane of the drawing: 

02UI OLlQI 
nl 072 - ---a;;- + re30 LlQ2 = PI j 

02U2 OLlQ2 
nl-- - -- - reaoLlQI = P2 ; 

072 aT! 
02'!?3 oLlM3 

J33-- - -- - LlQ2 = 0; 
072 aT! 

0'!?3 
- - Llrea = OJ 
8TJ 

OUI 
- - re30U2 = O· aT! ' 

LlM3 = A33Llre3. 

(8.70) 
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b) Relative to the plane of the drawing: 

82u3 8LlQ3 _ o. 
nl 872 -~ - , 

82{h 8LlMl 
Jll-- - --- - 8930LlM2 = O· 8r2 87] , 

82iJ2 8LlM2 
J22 -- - -- - 8930LlMl + LlQ3 = OJ 

8r2 87] 
8iJl 
- - 8930iJ2 - Ll891 = OJ 
87] 

8iJ2 
87] + 8930iJl - Lla92 = OJ 

8U3 
87] + iJ2 = OJ 

LlMl = AllLl89l, LlM2 = A22Lla92. 

8.4 Determination of Eigenvalues and Eigenvectors 

(8.71) 

For the approximate numerical solution of equations of the free and forced 
random vibrations of rods we must know eigenvectors characterizing the small 
free vibrations of rods under specific boundary conditions. 

Let us consider the free vibrations of a rod (without considering resistance 
forces) relative to a static state of stress and strain, using equation (8.56) 
(having put P = T = 0): 

A(l) 82 Z 8Z A(2)Z = 0 
8r2 + 87] + . 

We find the solution of equation (8.72) as 

Z = Zo (7]) eiAT . 

Substituting (8.73) into equation (8.72), we obtain 

dZo 
d7] + B (7], >.) Zo = 0, 

where 

AQA-l 
AMA-l + Are 

-A-l 

o 

(8.72) 

(8.73) 

(8.74) 

In that specific case of considering vibrations relative to a rods natural state 
(Qo = Mo = 0), the matrix B (7], >.) takes the form 
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Equation (8.74) is solved numerically, for example, by the method of ini­
tial parameters with a subsequent refinement of the fundamental matrix of 
solutions. As a result, we obtain 

Zo = K (11, A) C, (K (0, A) = E) , (8.75) 

where K (11, A) is the fundamental matrix of the solutions of homogeneous 
equations (8.74). 

Solution (8.75) should satisfy the boundary conditions. For a space-curved 
rod we have twelve boundary conditions (in groups of six conditions at 11 = 0 
and 11 = 1). For example, for a rod fixing, shown in Fig. 8.6, we have the 
following boundary conditions: 1) 11 = OJ U = Do = OJ 2) 11 = Ij L1Qo = 
L1Mo = O. In order to fulfill the boundary conditions at 11 = 0, we must 
put C7 = Cs = ... = C12 = 0, where Ci are the components of the vector C. 
From the boundary conditions at 11 = 1 we obtain the following system of 
homogeneous equations 

(8.76) 

The values of Ai, at which the determinant of system (8.76) is equal to zero, 
are non-dimensional frequencies. 

Having determined A' we find c(j) c U) c(j) cU) and c(j) from system J, 1 , 2 , 3 , 4 5 

(8.76) as a function of c~) (we may put c~j) equal to zero): 

c~) = a~)c~) (k = 1,2,3,4,5). 

We solve equation (8.74) for each Aj 

(j) 

dZo + B (11, Aj) z~j) = 0 
d11 

and find 

zU> - K ('l"l A') CU) o - 'J) J , 

where C(j) = (a~j), a~j), a~j), aij), a~j), 1, 0, O ... 0) T. 

(8.77) 

(8.78) 

(8.79) 

When solving equations of the random vibrations of rods by approximate 
methods it is convenient to present the vectors z~j) as 
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z~) = (1fJ(j), cp(j)) T , (8.80) 

where 1fJ(j) = (LlQ~), LlM~)); cp(j) = (f}~j), u~)) T. 

The vectors 1fJ(j) and cp(j) characterize respectively the state of stress and 
the state of strain of a rod at vibrations with the frequency Aj. 

8.5 Non-Stationary Random Vibrations of Rods 

The vectors 

P = qc + P c8 (11 - 11P) ; 

T = ILc + T c8 (11 - 11M) . 

entering in the right-hand sides of the first two equations of system (8.55) are 
random non-stationary vectors with the known probability characteristics of 

the components. Let us enter the force of viscous friction Ct ~~ into the first 

equation of system (8.55) : 

(8.81) 

For the numerical solution of system of equations (8.55) it is more convenient 
to present it with due account of the forces of viscous friction in the form of 
one equation similar to equation (8.56) 

where 

A(3)= 000 0 
000 0 . 
[
000 CtE] 

000 0 

(8.82) 

For the solution of equation (8.82) let us take advantage of generalized virtual 
work principle [26], restricting ourselves to the following two-term approxi­
mation 

z = Z~l) (11) h (r) + Z~2) (11) h (r). (8.83) 

We can take vectors proportional to the eigenvectors Z~) as generalized dis­
placements i.e. 
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A (1) A (2) 8Zo = 8 1 EoZO + 8 2 EoZO , (8.84) 

where 8Aj are independent arbitrary small quantities; 

[
0 0 0 E] o 0 E 0 

Eo= OEOO· 
EO 0 0 

By generalized virtual "displacements" we mean not only the variations 
of linear 8u and angular 8f} displacements, but also the variations of inter­
nal forces 8..1Q and moments 8..1M, Le. the variations of all components of 
vectors Z~) . 

The matrix Eo is introduced in order that all scalar products (ZEoZ~») 
have the dimensionality of work (if we consider dimensional equations (8.56)). 
Since 

E Z(j) = (u(j) iJ(j) ..1M(j) ..1Q(j»)T 
00 0'0' 0' 0 , 

the scalar product (Z(i) . EoZ~») in a more comprehensive form is 

(Z(i) . EoZ~») = (..1Q~) . u~») + (..1M~) . iJ~») 

+ (iJ~) . ..1M~») + (u~) . iJ~») . 

Having substituted (8.83) into equation (8.82), we obtain 

(8.85) 

Let us require that the integral of the scalar product of vectors 6 and 8Zo 
be equal to zero: 

1 ! (6. 8Zo) d17 = o. (8.86) 

o 

In view of independence of 8Aj we obtain two equations from (8.86) 

1 1 f (6 . EOZ~I») d17 = 0, ! (6 . EOZ~2») d17 = o. (8.87) 

o o 

By transformations we obtain from (8.87) the equations for the determination 
of fJ (r): 
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anA + al2i21 + bnit + b12 j2 + Cl1it + Cl2h = bl ; 

a2dl + a22i2I + b2lit + b22 j2 + C2lit + C22h = b2, 

where 

I 

aij = ! (A(I)Z~) . EOZ~i») dry; 

o 
I 

bij = ! (A (3) Z~) . EOZ~i») dry; 

o 
I 

Cij = ! (Z~) + A(2)Z~») . EoZ~i) dry, 

o 
I I 

bi = ! (~. EOZ~I») dry, b2 = J (~. EOZ~2») dry. 

o 0 

In a more comprehensive form 

I I 

bi = - J (P. u~I») dry - J (T. D~l») dry; 

o 0 
I I 

b2 = - ! (P. U~2») dry - J (T. D~2») dry. 

o 0 

With due account of expressions for P and T we obtain 

I I 

301 

(8.88) 

bl = - J (qc' U~l») dry - J (JLc' D~l») dry - pcU~l) (ryp) - Tc' D~l) (ryM); 
o 0 

I 1 

b2 = - J (qc' U~2») dry - J (JLc' D~2») dry - Pc' U~2) (ryp) - Tc' D~2) (ryM). 
o 0 

(8.89) 

Let us consider random loads of the form 

qc = qoc (ry) fq (r); Pc = POe (ry) fp (r); 
(8.90) 
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Let us restrict ourselves to the case of qOe, POe, f-toe and Toe being known, 
and f q, fp, f/1- and fM being independent random functions of time with 
known probability characteristics. 

From (8.89) after transformations with account of (8.90) we obtain 

b1 = -dllfq - dl2 f/1- - d13 fp - dl4 fM; 
(8.91 ) 

where 1 

dil = f (qoeug)) dry; 

o 

di3 = (PoeUbi) (ryp)); 

Passing to the vector form, from (8.88) we obtain an equation 

(8.92) 

The solution of equation (8.92) with the subsequent determination of 
the probability characteristics of the components of the vectors f is given in 
Chapt. 3. The solution of equation (8.92) at zero initial conditions is 

t 

f = f G(t,T)A-ID~dT 
o 

or in scalar form 
t 

fj = f (kjdt,T)fq+kj2(t,T)fp+kj3(t,T)f/1-+kj4(t,T)fM) dT 

o 

(j = 1,2) , 

where kji are the elements of the matrix K = G A -1 D. 

(8.93) 

It is possible to obtain the matrix G (t, T) by solving equation (8.92) by 
the arbitrary constants variation method. 

As a result, we obtain an approximate solution to equation (8.82): 
t t 

Z = f (Zb1) kll + Zb2) k21) fqdT + f (Zb1) k12 + Zb2 ) k22 ) f pdT 

o 0 

t t 

+ f (Zb1) k13 + Zb2 ) k23) f/1-dT + f (Zb1) k14 + Zb2 ) k24) fMdT. (8.94) 

o 0 
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The components of the vector Z are: 

t t 

Zj = J (z~~) ku + z~~) k21 ) fqdr + J (z~~) k12 + Z~~) k22 ) fpdr 
o 0 

t t 

+ J (z~~) k13 + Z~~) k23) f I"dr + J (z~~) k14 + Z~~) k24) f Mdr. (8.95) 

o 0 

The mathematical expectation of the components Zj of the state vector Z 
and their variances for independent excitations are 

t t 

DZj = J J [Z~~)kll (t,r) + Z~~)k2dt,r)] . [Z~~)kll (t,r') 
o 0 

+ Z~~)k21 (t,r')] Kfq (r,r') drdr' 

t t 

+ ... + J J [z~~)k14 (t,r) + Z~~)k24 (t,r)] . [Z~~)k14 (t,r') 
o 0 

+Z~~)k24(t,r')] KfM (r,r') drdr'. (8.96) 

Assuming that the components Zj have normal distributions, we can deter­
mine their maximum values for an arbitrary time instant r and a coordinate 
1] 

(8.97) 

8.6 Stationary Random Vibrations of Rods 

Let us consider equation (8.82) of small forced vibrations with due account 
of viscous resistance forces, confining ourselves to the case of a concentrated 
stationary force Pc and a concentrated moment T c (qc = JLc = 0) acting on 
the rod. We find the solution of equation (8.82) in the form of two-term 
approximation (8.83). Having used the generalized virtual work principle, by 
manipulations we obtain an equation similar to that of (8.92) 
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(8.98) 

where 

[ 

(1) (1) (1)] U 01 U02 U03 
D(1) - . 

'tip - (2) (2) (2) , 
U 01 U 02 U 03 

[

19(1) 19(1) 19(1)] 
(2) _ 01 02 03 

D'tIm - . 
19(2) 19(2) 19(2) 

01 02 03 

Having used the Fourier transform, we obtain from (8.98) the image of 
the vector f (w) in frequency area. 

f (w) = W (iw) D(l)pc (w) + W (iw) D(2)Tc (w), 

where 

(8.99) 

In scalar form we have 

3 3 

/(1) (w) = L U~~ (WllPk ) + L U~~ (WI2 P k) 

k=O k=O 
3 3 

+ L 19~~ (wllTk) + L 19~~ (W12 T k); (8.100) 
k=O k=O 

3 3 

/(2) (w) = L U~~ (W21 P k) + L U~~ (W22Pk) 

k=O k=O 

3 3 

+ L19~~ (W21 T k) + L19~~ (W22 T k). (8.101) 
k=O k=O 

We consider that the spectral densities S Pk' STk of the components of the 
vectors Pc and T c are known. Let us confine ourselves to a case where it is 
possible to consider the components of the vectors to be independent random 
functions. Then the cross-spectral densities are equal to zero. For the case of 
the vectors Pc and T c being directionally invariable, but random in absolute 
value, we have 

(8.102) 

where ep, eT are unit vectors directionally coinciding with those of Pc and 
T c' If the moduli of the forces are random stationary functions, it is sufficient 
to know only their spectral densities S p (w), ST (w). Let us obtain the spectral 
densities /(1) and /(2) for the general case where the spectral densities of the 
components of the vectors Pj and Tj are different. 
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The algorithm of determining the spectral densities is presented in Sect. 6.3. 
Having used this algorithm, we obtain from (8.100) and (8.101) (provided 
that Pc and Teare independent) the spectral densities 8 j(l); and 8 j(2) 

3 3 

Sj(l) (w) = LIJk1) (iw) 8Pk (w) + L 'Yk1) (iw) 8Tk (w); 
k=l k=l 

3 3 
(8.103) 

8j (2) (w) = L IJk2 ) (iw) 8Pk (w) + L 'Yk2 ) (iw) 8Tk (w) , 
k=l k=l 

where 

(8.104) 

The cross-spectral densities are 

3 3 

8 j(l) j(2) = L IJP) 8 Pk + L 'Yk3 ) 8Tk; 
k=l k=l 

3 3 
(8.105) 

8j (2)j(1) = LIJk4)8Pk + L'Yk4)8Tk, 
k=l k=l 
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where 

(8.106) 

(8.107) 

The expressions for spectral densities SI(i) (w) (8.103) and cross-spectral den­
sities Sj(i)/(k) (w) (8.105) can also be obtained, using the Wiener-Khintchin 
relationships that connect correlation and cross-correlation functions with 
spectral densities, as we did it in Chap. 6. 

The products of the functions Wij and w;k dependent on iw enter in the 

right-hand side of expression (8.104) for the coefficient JJki).The products of 
the functions with the same indexes are equal to the square of the modulus 
of an appropriate function, i.e. 

(8.108) 

The square of the modulus of a complex function is a real function. The 
products of complex functions with different indexes are complex functions, 
for example, 

( *) ((1) . (2») ((1) . (2») (1) (1) Wll W I2 = W 11 + ~Wll W I2 - ~WI2 = W 11 W I2 

(2) (2) . ( (2) (1) (1) (2») + Wll W I2 + ~ Wll W I2 - W ll W I2 , (8.109) 

where wg>, wW are real parts; wg) , wg) are imaginary parts. The real parts 
of the complex functions are even functions of w, while the imaginary ones 
are odd functions, i.e. 

W(I) (w) - well (-w) . w(2) (w) - _w(2) (-w) II -11 , II - II . (8.110) 

The product of odd functions is an even function. Therefore the real part 
of expression (8.109) is an even function, while the imaginary one is an odd 
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function. These results will be used in determining the variance of the com­
ponents of the vector Z (8.83). 

The components of the vector Z at a two-term approximation are 

(8.111) 

Passing to the Fourier image, we obtain 

(8.112) 

We can obtain the spectral densities of the components Zj (and the cross­
spectral densities of Zj, Zk) by using the algorithm of determining SYk and 
SYkYv that was presented in Sect. 6.5. 

where SI(1), SI(2) and SI(1)1(2) are determined from relationships (8.103) and 

(8.105). We can present the coefficients ,Bij ) , I'ij ) 

(k = 1, 2, 3; j = 1, 2, 3, 4) that enter into (8.105) and in (8.107) as 

rh) _ (.)(j)(1) + • rh)(2) ",(j) _ ",(j)(1) + .",(j)(2) 
"'k - fJk ""'k' Ik - Ik "Ik' (8.114) 

where f3ij )(l), I'ij )(l) are the even functions of w; f3ij )(2) and I'ij )(2) are the 
odd functions of w. Therefore we obtain: 

3 

S ( .) - '" (B(l)(l)S + (l)(l)S ) 1(1) 1,W - 6 . k Pk I'k Mk 

k=l 

+ i [t, (f3i1)(2) SPk + I'i1)(2) SMk) 1 ; 
3 

(8.115) 

S ( .) - '" ((.)(2)(1)S + (2)(1)S ) 1(2) 1,W - 6 "'k Pk I'k Mk 

k=l 

+ i [t, (f3i2)(2) S Pk + I'i2)(2) S Mk ) 1 ; 
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3 

81(1)/(2) (iw) = L (JJk3)(1) 8 Pk + rk3)(1) 8 Mk ) 
k=l 

+ i [t, (JJk3) (2) 8Pk + rk3)(2) 8 Mk ) 1 ; 
3 

81(2)/(1) (iw) = L (JJk4)(1)8Pk +rk4)(1)8Mk ) 

k=l 

+ i [t, (JJk4)(2) 8Pk + rk4)(2) 8 Mk ) 1 ; 
We can present relationships (8.115) as 

8 8 (1) '8(2) 8 8(1) '8(2) 
1(1) = 1(1) + ~ 1(1)' 1(2) = 1(2) + ~ 1(2); 

8 8 (1) '8(2) 8 8(1) '8(2) 
1(1) 1(2) = 1(1) 1(2) + ~ 1(1) 1(2) , 1(2) 1(1) = 1(2) 1(1) + ~ 1(2) 1(1) ; 

with 

8(1) - 8(1)· 8(2) - _8(2) 
1(1) - 1(2) , 1(1) - 1(2) , 

8 (1) - 8(1) . 8(2) 8(2) 
1(1) 1(2) - 1(2)/(1)' 1(1) 1(2) = - 1(2) 1(1)' 

(8.116) 

(8.117) 

(8.118) 

(8.119) 

The sum of cross-spectral densities enters into relationships (8.113) and with 
due account of (8.118) and (8.119) is equal to 

(1) 
8 1 (1) 1(2) + 8 1 (2) 1(1) = 281 (1) 1(2) , (8.120) 

i.e. is an even function of w. The cross-spectral densities of the components 
of the vector Z are 

The variances of the components Zj can be expressed as 

00 

DZj = J 8 zj (ry, w) dw, 
~OO 

or 

~OO 

(8.121) 
~OO ~OO 
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As the integrals of the odd functions are equal to zero, we obtain from 
(8.121) 

DZj (77) = (zW (77»)2 [t, (IJL1)(1)SPk +1'L1)(1)SMk)dw] 

+ Z~~) (77) Z~~) (77) [t, (IJL4)(1) SPk + 1'L4)(1) SMk)dw] 

+ (Z~~) (77)f [t, (IJL2)(1)SPk +1'L2)(1)SMk)dw]. 

The root-mean-square values of the components Zj take the form 

Let us consider special cases. 

(8.122) 

(8.123) 

1. The one-term approximation at Pc -=1= 0, Tc = 0 may be written as 

z = Z~1) f(1) . 

The equation for determining f(l) (7) has the form 

3 
··(1) ·(1) (1) '" (1) 77llf + bllf + Cllf = L....J uOj (771) PI (7). 

j=l 

The frequency function is defined by the formula 

( . ) (. ) 1 (1) () . (2) ( ) 
W ZW = Wll ZW = 2 . b = Wll W + 1,Wll W . 

-wall + ZW 11 + Cll 

The Fourier image of the function f(l) is 

3 

f(l) (w) = L u~~ (771) Wll (W) Pk (w). 
k=l 

3 

Sf(1) (W) = L U~~ (77d IWlll2 SPk (W). 
k=l 

The variances of Zj (77, w) are equal to 

D" (q) ~ (z;;) ("))' [t,_l (u.\~ ('h)) 'Iwn I' S" (w) dw]. (8.124) 
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2. For the case of Pc = 0, T c =I- 0 we have 

(8.125) 

In some cases the integrals entering into Dzj can be integrated (Appendix 2). 
In those cases when this is impossible the integrals can be obtained numer­
ically at finite limits that are specified from the requirement of final result 
given accuracy achievement. The expressions obtained for the variances and 
standard deviations of the components Zj (8.124), (8.125) allow to obtain 
their values at any cross-section of a bar including cross-sections where they 
attain maximum value. Using the three sigma rule we obtain the greatest 
possible value of Zj at mZj = 0 as 

(8.126) 

Normal stresses a at an arbitrary cross-section with due account of static 
stresses are equal to 

(8.127) 

where Z10 = Q1O, Z50 = M 20 , Z06 = M 30 ; Ix, Iy are cross-sections moments 
of inertia; x, yare principal central axes of cross-section. 

By way of transformations we obtain 

(8.128) 

where ao = Q10 + M 20x + M 30y. 
F Iy Ix 

The maximum stresses at the dangerous cross-section of the bar are 

- () _ [- + 3 (O"~Ql + 0"~M2X + 0"~M3Y)] O"max ry - maxmax 0"0 -F -1-- --1--
TJ F y x 

or 

- ()_ [-(l)+3(0"~Ql +0"~M2X* +0"~M3Y*)] O"max ry - m;x 0"0 F Iy Ix ' (8.129) 

(
_(1) = Q10 + M20X* + M30Y*) 
0"0 F Iy Ix' 

where x*, y* are coordinates of the dangerous point in the cross-section. 
Normal stresses amax(ry) depend on dimensionless coordinate ry therefore 

there is a section 'T} = 'T}*, where amax('T}) attains maximum value, i.e. 
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Minimum stress in this section (at the point having coordinates (x*, y*)) 
is 

Maximum (8.130) and minimum (8.131) normal stresses allow to estimate 
fatigue strength of the bar. 
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9. Fundamentals of Reliability Theory 

9.1 Introduction 

The previous chapters were devoted to the theoretical fundamentals of statis­
tical mechanics and the theory of random vibrations. The readers attention 
was focused on mathematical methods of solving problems of the dynamics 
of mechanical systems loaded with random forces and the determination of 
the probability characteristics of the vector of the system state, or, what 
is the same, to the determination of the probability characteristics of the 
"output" given that the probability characteristics of the "input" are known. 
Mechanical systems with a finite number of degrees of freedom and systems 
with distributed parameters (structures or elements of structures reduced to 
a mathematical model of a rod) were considered. Methods making it possi­
ble to determine the probability characteristics of the stress-strain state of 
the structural members at non-stationary and stationary random forces were 
presented. It has been shown that methods of statistical dynamics allow the 
solution of many applied problems when the random components of loads 
cannot be ignored. However, questions of the "strength" of a structure at 
random loads were, in fact, not considered. 

Before going on to methods of estimating the "strength" of structures in a 
probability formulation let us recall how traditional analysis in a determinate 
formulation is carried out. These methods include a limit state design method 
(based on the occurrence of plastic deformations, on fracture or on buckling) 
and an allowable stress design method. 

The limit state design method compares the maximum acting load (more 
precisely, the load- induced stress-strain state) with the load corresponding 
to the limit state which determines the load-carrying capacity of a structure. 
This capacity is the onset of a limiting stress-strain state that corresponds 
to a structures loss of serviceability or failure. These limiting states embrace 
plastic deformations, loss of static stability, and failure. Let us consider some 
examples of limit state design. 

A straight rod tensioned by a force P is shown in Fig. 9.1 a; in so doing the 
arising stresses should not exceed the elastic limit. In this case, the limiting 
state and the maximum force P, corresponding to it, will be the force P at 
which the stresses in the rod reach the yield point O'y. Therefore to ensure 
the normal work of this element the condition 
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a) 

p 
------- - ------ --t---.... 

b) 

Fig. 9.1. 

ay - a> 0 (a = ~). (9.1) 

must be satisfied. 
A straight rod loaded with a tensile force P and a twisting moment M is 

shown in Fig. 9.1 b. A two-dimensional stress state arises in the rod. Therefore 
to avoid plastic deformations in the rod it is necessary to fulfill the condition 

a y - maxae (P, M) > 0, (9.2) 

M 
where max a e = max J (J2 + 472 or max a e = max J a2 + 372 , max 7 = Wk 

depending on a strength criteria adopted at calculations. (Wk is the geomet­
rical characteristic of the rod section; for example, for a round rod it is equal 
to 1T D3 /16) . 

A rocket in a launch position is shown in Fig. 9.2. A system of elastic 
constraints (a damping system) enables it to deflect at a shock wave passage 
by an angle -a (in order to reduce dynamic overloads), but the angle of rotation 
of the axial line of the rocket is bounded by the greatest possible angle -an, 
which depends on the structure of the dampers and their allowable linear 
displacement. 

A drilling rig is shown schematically in Fig. 9.3. During the operation of 
the drill vibrations arise resulting in a situation where the rod, at large de­
flections from the axis of symmetry, can strike against the surface of the well, 
which is extremely undesirable. Therefore to ensure the normal operation 
of the system that would exclude contacts with the surface of the wall the 
displacements of the points of the rods axial line u (z, t) at vibrations must 
satisfy the condition 

.d- max lu (z, t)1 > O. (9.3) 
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Fig. 9.2. 

z 

Fig. 9.3. 

A straight rod loaded with a compressive force P is shown in Fig. 9.4. A 
limiting state in this case is the loss of static stability, therefore the critical 
force Pk should exceed the compressive force 

Pk - P > o. (9.4) 

Figure 9.5 schematically shows a turbojet engine that would not operate 
normally unless the elongations of the blades L1l appearing during its oper-
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Fig. 9.4. 

Fig.9.S. 

ation (at w =I- 0) are smaller than the gap Ll between the internal surface of 
the casing and the blades at w = 0 

Ll- Lll (w) > o. (9.5) 

A variation of normal stress 0' , arising at the work of a structures element, 
as a function of time is shown in Fig. 9.6. The normal operation of the element 
at a fully reversed loading cycle requires that the stress is at least smaller 
than the limiting stress corresponding to the fatigue strength of the given 
material 
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(J 

t 

Fig. 9.6. 

a_1- a >0, (9.6) 

where a -1 is the fatigue strength at the symmetrical loading cycle. 
Methods of limit state design allow us to take full advantage of the load 

carrying capacity of a structure. 
Generally we have 

s - F > 0, (9.7) 

where S is the function describing the limiting capabilities of the structure, 
F is the function describing the real state of the structure. 

For example, S depends on the mechanical characteristics of the material 
of the structure 

where au is the ultimate strength, J-L is the Poisson ratio, E, G are elastic 
moduli of respectively the first and second kind. The function F depends on 
the stresses arising in the elements of the structure at loading 

Limiting states can be related not only to the strength properties of a 
structure. For example, Fig. 9.7 shows a rocket whose trajectory of motion 
should not go beyond an allowable "tube" of trajectories (for each instant 
t it represents some design closed limiting area Dd). Therefore the control 
system of the rocket should ensure the fulfillment of the condition 

Dd(t) - D (t) > 0, (9.8) 

where D (t) is the real area, inside which the rocket is during its motion. 
In the design method that uses the allowable stresses the concept of a 

safety factor is introduced and the allowable stress aa is taken equal to 

aa = [a] = an, 
n 

(9.9) 
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Fig. 9.7. 

where an is the limiting stress (yield point for plastic materials, ultimate 
strength for brittle materials or critical stress corresponding to loss of static 
stability); n is the factor of safety. 

Therefore the conditions of "strength", for example for (9.1), (9.2), (9.4) 
and (9.5) at a design based on allowable states are 

a y 
- -a ~ 0, 
nl 

ay -maxae(P,M) ~ 0, 
nl 

Pk 
- -P~ 0, 
n2 

..1 
- - ..1l (w) ~ 0 (n> 1). 
n3 

(9.10) 

It is generally agreed that the fulfillment of conditions (9.10) at the de­
terminate values of the quantities entered in them ensures the "strength" of 
these structures. 

It is possible to present relationships (9.10) in a more general form as 

(9.11) 

where Rc is the load carrying capacity of the structure or of its elements, Sd 
is the allowable state, for example, the allowable load, allowable stresses etc., 
S is the real state, n is the factor of safety. 

The values Re , Sand n entered in the relationships (9.11) are considered 
determinate quantities. In a determinate statement the ultimate goal of a 
design is to check the fulfillment of inequalities (9.11). We may consider that 
the fulfillment of inequalities (9.11) assures the no-failure operation of the 
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structure while it is in use. (In the general case any failure represents a 
malfunction of the structure, and not just the occurrence of a limiting state). 

The factors nj are chosen on the basis of the gained experience. Each 
field of technology has its own requirements for the designed equipment and 
traditional methods of analysis, which allow us to recommend the numerical 
values of the safety factors. They are often referred to as "normative factors 
of safety on strength" or "normative safety margins" . For example, in aircraft 
technology it is recommended to take safety factors equal to n = 1.5, while 
in rocket and space technology they advice to take these factors equal to 
n = 1.2. 

The chosen numerical values of the factors n depend on the importance of 
the designed equipment, the level of manufacturing technology, the properties 
of materials and the accuracy of specifying loads. Safety factors have been 
revised with due account of generalized many-year experience of designing 
in all industries, therefore each of them has its own "strength design codes" 
that are used in practical designing. These codes define the structure and 
volume of basic works performed at all stages of producing structures and 
necessary for the assurance of the required strength. Designing, where all 
strength requirements that should be realized in a developmental prototype 
are taken into account, including every "physical" feature of the structure and 
its real operation conditions, plays the leading role in making this structure. 

When using design methods based on strength design codes during the de­
termination of the load carrying capacity of a structure the function of safety 
factors is in the main reduced to the compensation of: 1) the discrepancy 
between the determinate form of presenting the results of a strength design 
and the possible scatters of the structures parameters and loads; 2) the devi­
ation of the design scheme (mathematical model) from the real structure and 
real loading conditions, which results in a large factor of safety scatter even 
when designing structures of the same type. For example, in the process of 
designing guided projectiles in Britain the factor of safety n, equal to 1.33 is 
adopted, while in the USA during the designing of guided projectiles with a 
close system performance the factor n equal to 1.25 is used [3J. There is no 
rational explanation as to why the factors n differ, therefore specifying them 
involves some uncertainty, i.e. they are random in character. 

In many cases the introduction of safety factors allows the obtainment of 
satisfactory structures. When designing new equipment, however, when the 
lack of experience and operational data makes it very difficult to choose a 
reasonable safety factor. The arbitrarily assigned safety factor can produce 
wrong solutions resulting either in the overestimated weight of structures or 
in emergencies. The principal difficulty in determining allowable stresses (or 
deformations) and a structures load carrying capacity is to coordinate design 
and actual data. The problem of choosing the specific value of safety factor 
in order to determine, for example, the allowable stress is complicated by 
the fact that the mechanical characteristics of the material, influencing the 
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structure limit states, as well as real forces and geometrical sizes of structure 
elements, influencing the structure current states, have random scatters. Tra­
ditional design methods both at limit state design and at the design using 
the allowable stresses, do not explicitly take into account possible random 
scatters, i.e. do not consider the probability character of the limit states of a 
structure or that of its real state. 

Therefore it is more logical to estimate the structure serviceability not on 
the basis of determinate inequalities (9.1)-(9.3), but in terms of the proba­
bility of their fulfillment, i.e. 

P[(8 - F) > 0], (9.12) 

where P is the probability of no-failure operation. 
The probability of failure is equal to 

R=I-P, (R [(8 - F) < 0]) . (9.13) 

Estimation of the "strength" with due account of the probability character 
of parameters and loads of the structure requires different methods based on 
the theory of probabilities and statistical mechanics. Therefore we introduce 
the concept of the systems reliability H which is estimated by the probability 
of fulfilling inequality (9.7) 

H = P [(8 - F) > 0]. (9.14) 

By reliability we shall mean the ability of machines, devices and structures 
to operate trouble-free during a certain time interval. The no-failure operation 
of technical objects is considered to mean the fulfillment by them of all their 
functions in the given operating conditions. There is another, more detailed 
definition of reliability as: "the property of objects to retain in time, within 
the predetermined limits, the values of all the parameters characterizing the 
ability to fulfill the required functions in the preset operating conditions and 
conditions of use, maintenance, repair, storage and transportation". 

Passing to the probability methods of "strength" estimation, when it is 
necessary to take into account the random character of loads and the parame­
ters of the structure, we find the probability of the fulfillment of determinate 
inequalities (9.1)-(9.8) rather than the latter themselves. For general case 
(9.7) the estimation of trouble-free operation is related to the determination 
of the probability 

P[(8-F) > 0]. (9.15) 

The question arises about the extent of probability estimations of "strength" 
being better than traditional ones that use the factor of safety which is as 



www.manaraa.com

9.1 Introduction 321 

unspecific as the probability itself. The point is that probability estimations 
of "strength" take into account objectively existing random scatters of loads, 
mechanical characteristics of materials, etc., and for this reason represent real 
conditions more completely. In what follows it will be shown that at factor 
n = 1.5 the probability of trouble-free operation can be lower than at n = 1.2, 
which seems strange as it is usual to assume that the greater the factor of 
safety, the greater the "strength" of a structure. 

Probabilities of the no-failure operation of a system in themselves are of 
little use (for example, if P = 0.9 it is hard to say whether it is good or bad), 
but if we carry out an analysis for two versions of a material with due account 
of the probability properties of their mechanical characteristics and it turns 
out that the probability of no-failure operation is equal to 0.9 and 0.95 respec­
tively, we can definitely state that the structure with the 0.95 probability of 
no-failure operation will be better. The account of random scatters produces 
qualitatively different estimations of "strength", which makes it possible to 
design more rational structures having greater reliability, durability and life­
time. 

Assuring the reliability of designed mechanical systems is one of the ba­
sic problems in mechanical engineering, instrument making, aircraft, space­
rocket engineering and many other industries. It is explained by the continu­
ous growth of reliability and life requirements to new equipment that should 
normally function in severe operation conditions. By convention all problems 
of estimating the reliability of mechanical systems can be divided into three 
classes. 

1. The estimation of the reliability of a structure or structure components 
under a single or low-cycle loading. The problems of estimating reliability 
under single loading arise both at static and dynamic loading, for example, 
at impact or pulse loading [22]. 

No damage accumulation occurs in these problems or, if it does at a small 
number of load cycles, this damage accumulation can be ignored. 

2. Problems involving the accumulation of residual macroscopic strain 
within a limited time interval (0, T) under stationary or quasi-stationary 
random loads [9], when it is possible to consider single overloads resulting in 
the failure of a system as highly improbable. During analysis pertaining to 
these problems the task is to determine probability distributions for resid­
ual strains at t = T. The quasi-stationary loads (processes) are considered 
to mean processes whose probability characteristics change in time slowly 
compared with the variation of random functions. 

3. Problems related to accumulation of fatigue damage under the action 
of stationary or quasi-stationary random loads, when the probability that 
stresses arising in a structure will exceed the elastic limit is very low, and the 
structure fails as a result of gradual development of fatigue cracks [9, 19]. 
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9.2 Elementary Problems of Reliability Theory 

Before proceeding to methods of finding the numerical values of the proba­
bility that inequalities (9.1)-(9.6) will be fulfilled, we shall tackle elementary 
problems of determining a systems reliability when that of its elements is 
known. 

a} 

x y 

b} 

Fig.9.S. 

Let us consider an example of determining the reliability of a system that 
comprises separate elements whose reliability is equal to Hk (Fig. 9.8). Two 
mechanical systems with the known probabilities Pk (Pk = Hk) of no-failure 
operation of each of the members of the system are shown in Fig. 9.8 a, b 
as block diagrams. The system presented in Fig. 9.8 a consists of members 
connected in series; while that drawn in Fig. 9.8 b includes members connected 
in parallel. Let us consider the case of members being connected in series 
(Fig. 9.8 a) and interacting in such a way that their failures (Rk = 1 - Pk) 
are independent. It is required to determine the reliability of the system as 
a whole. This system maintains serviceability only when all of its members 
connected in series operate failure-free. It is to be recalled that the probability 
of occurrence of a joint event consisting of n independent events is equal to the 
product of the probabilities of occurrence of each of the n events. Therefore 
the probability P of no-failure operation of the system as whole is equal to 

p 

P=H= IIHj • (9.16) 
j=1 
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For example, if p = 4, HI = 0.9, H2 = 0.8, H3 = 0.7, H4 = 0.6, the 
reliability of the system is equal to H = 0.3024, i.e. the reliability of any 
system made of members connected in series is lower than the reliability of 
its components. 

Let us consider a system whose components are connected in parallel 
(Fig. 9.8 b) and duplicate each another. The failure of the system will occur 
only if all of its components fail. 

The probability that each of its members fail is equal to 

The probability that the whole system fails (theorem of product of prob­
abilities for independent events) is equal to 

5 

R=II(l-Hi ) . (9.17) 
i=1 

The probability of no-failure operation of the system (the reliability of 
the system) is 

5 

H = 1 - II (1- Hi)· (9.18) 
i=1 

For example, if Hi = 0.5, the total reliability of a given block is equal to 
H = 0.97. The reliability of a system with its components being connected 
in parallel is higher than that of its components, i.e. if such system includes 
low-reliability components, we can substantially increase its reliability by 
substituting a block of several low reliability components connected in parallel 
for one low reliability component. For example, there is one low-reliability 
component (H2 ) in a system of three members connected in series (Fig. 9.9). 
If the reliabilities of these components are equal to: HI = 0.9, H~I) = 0.3, 
H3 = 0.8, the total reliability of the system is H = HIH~I) H3 = 0.216. 
If we replace the component H~I) with a block of three exactly the same 

U H, G H2 
.. . ... . . . 
: H2 : 
. . . ...... .. 

Fig. 9.9. 
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Fig. 9.10. 

members connected in parallel (in Fig. 9.9 they are shown by dashed lines), 

the reliability of this unit will be HJl) = 1 - (1 - HJl)) 3 = 0.657 and the 

total probability of no-failure operation will equal H = 0.9·0.657·0.8 = 0.473, 
i.e. the reliability of the system will increase more than 100 percent! 

An four-engine airliner is shown in Fig. 9.10. We may consider its system of 
engines as that of members connected in parallel (Fig. 9.10 b). Let us assume 
that a reliability H j of all engines is the same and equal to H j = 0.9. The 
airliner can fly if three of its engines fail. In this case the failure of the system 
will occur, when all four engines fail. At the independent work of the engines 
the probability of failure is equal to 

R = (1 - H j )4 = (0.1)4 = 0.0001, 

therefore, H = 1 - R = 0.9999. 
If the airliner can fly only with two of its engines working, the reliability 

is equal to H = 1 - (0.1)3 = 0.999. 

9.3 Possible Causes of Failures 

Among the principal causes of failures of mechanical systems are: incomplete 
agreement between the load used in the analysis and the real load; intensive 
loads resulting in an excess of the load carrying capacity of a structure; plastic 
deformations of elastic elements; wear of parts; excess of allowable deforma­
tions; loss of stability, etc. A failure can result from random defects present in 
structural elements and developed in them while in service (development of 
cracks), as well as from damage accumulation and changes in the mechanical 
properties of material (for example, due to irradiation). For example, a rocket 
thrust R (Fig. 0.2) will have a scatter (R = Ro + d.R, where Ro is the design 
value of the thrust and LlR is the random scatter) on account of a random 
change in the temperature of the charge. Because of technological errors at 
assembling the axial line of the rocket and the line of the thrust action can 
be out of alignment that results in the occurrence of a random force LlNc 
and a random moment LlMc and eventually in an impermissible scatter of 
the hit point of the rocket, which may be considered as a failure. 

During the flight of flying vehicles in a rough (turbulent) atmosphere 
they are subjected to the action of random aerodynamic forces that can 
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substantially change their flight trajectories with the latter going beyond 
the allowable ''tube'' (Fig. 9.7) and this is also a failure. Similar failure can 
result from a random cross wind. FigureO.l shows a vehicle moving along a 
road with random irregularities that account for random components in the 
forces of interaction of the vehicles wheels with the road. Depending on their 
"magnitudes" these components can cause such failures as break-down of the 
suspension or suspension fatigue failure. 

Failures can also occur owing to a discrepancy between the design scheme 
(mathematical model) and the real structure, for example, because of ignoring 
non-linearities, gaps, friction and the scatter of the mechanical properties of 
the material in the mathematical model. 

9.4 Determination of Numerical Values of No-Failure 
Operation Probability (Reliability) 

It will be recalled that the reliability is defined as the probability of nofailure 
operation (9.14) 

H = P [(S - F) > 0]' (9.19) 

where S is the function defining the limiting capabilities of a structure (the 
function of load carrying capacity of a structure), F is the function defining 
the current state of a system. This section is devoted to problems of determin­
ing reliability at the action of single loading or a small number of sequential 
loadings. When tackling these problems we can ignore the accumulation of 
damage in the structure. In order to determine the probability P we must 
know the joint distribution law J (z) of the random quantity Z = S - F 
provided that the distribution laws of Sand F are known. If we know J (z), 
the probability P is equal to 

00 

P(Z> 0) = I J(z) dz = II J(S,F) dSdF. (9.20) 

o n(S-F>O) 

In order to obtain the numerical values of H we must know (determine) 
the distribution law of the random quantity Z that is functionally dependent 
on two continuous random quantities X and Y 

Z = <p(X, Y), (9.21) 

at their known joint probability density distribution law J (x, y) (See Chap. 1). 
Generally the distribution law F (z) of the random quantity Z is 

F(z) = P(Z < z) = P[(X,Y) c D] = II J(x,y) dxdy. (9.22) 

D(Z<z) 
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The mathematical problem of determining F (z) has reduced to taking 
the following double integral: 

F(z) = II f(x,y) dxdy. 

DCZ<z) 

For the case of Z = X + Y the integral is taken over the area D shown 
in Fig. 9.11, where 

x+y < z, 

therefore, fixing z and assuming that y = z - x, we obtain the specific limits 
of integration 

F(z) ~ II I (x,y) dxdy ~ 1 [1"1 (x, Y) d Y] dx. (9.23) 

We obtain the density of distribution f (z) by differentiating (9.23) with 
respect to z that enters into the upper limit of the integral as a parameter 

As the random quantities X and Y are equivalent, we could exclude not y, 
but x and obtain another expression for the probability density distribution 
law f (z) 

y 

x+y>z 

x 

x+y<z 

D(Z <z) 

Fig. 9.11. 
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00 

f (z) = I f (z - y, y) dy. (9.25) 

-00 

If X and Y are independent, the density of Z distribution is equal to 

00 

f (z) = I h (x) fz (z - x) dx (9.26) 

-00 

or 

00 

f(z)= I h(z-y)fz(y)dy. 

-00 

Integrating the right-hand side of (9.26) over x, we obtain a function 
dependent on z. 

When determining the no-failure operation probability, we must deter­
mine the distribution function F (z) of the random quantity z that is equal 
to the difference of two random quantities s and fa 

z = s - fa 

at the known joint distribution law f (s, fa), i.e. 

F(z) = II f(s,fo) dsdfo· 

D(Z<z) 

In the shaded area shown in Fig. 9.12 s- fa < z. Therefore, the integration 
over the area D as in the previous case we can replace by integration over fa 
at a fixed z (fa = s - z) , and then over s 

(9.27) 

Differentiating (9.27) with respect to z, we obtain 

If the random quantities s and fa are independent, we have 

00 

f (z) = I h (s) fz (s - z) ds (9.28) 
-00 
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F 

S-F<z 

S-F>z 

S 

o 

Fig. 9.12. 

or, changing the order of integration, 

00 

+ j It (z + fo) h (fo) dfo. (9.29) 

-00 

Let us consider the case of s and fo having normal distributions 

f(s)= '2=1 exp{_(S~~s)2}, 
v ~7fas as 

(9.30) 

f (f) = 1 exp {_ (f - ~fO)2} . 
V27ra fo 2a fo 

(9.31 ) 

Therefore in this case the distribution law of the random quantity z (9.28) is 
equal to 

or 

00 

f(z)= 1 jexp {-As2 ±2B(Z)S-C(Z)}dS, 
27fasa fo 

-00 

where 
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Using the tabulated values of certain integrals, we obtain 

1 F {AC-B2} 
f (z) = 21rasaio VA exp - A 

or by manipulations we get 

1 {(Z - mz)2} 
f (z) = !f= exp - 2 2 ' 

V ~1raz az 
(9.33) 

where m z = ms - mio' az = Ja; + aJo' 

Having determined f (z), we find the probability of no-failure operation 
(reliability) 

00 

H = P (Z > 0) = / f (z) dz. 

o 

Introducing a new notation 

fJ = z - (ms - miD), 
a z 

we obtain 

(9.34) 

(9.35) 

The plot of an integrand is shown in Fig. 9.13. The function f (fJ) is symmetric 
about the vertical axis, therefore 

00 /30 

~ / {.oo} = ~ / {oo.} 
-/30 -00 

o /30 /30 

= ~ / {oo.}+ ~J{oo.} =0,5+ ~J{.oo}. 
-00 0 0 

We obtain the final numerical value of reliability 

1 
H = 0,5+ (;C 

v 21r 

""8 --mE 

1 exp {_~2} dfJ. 

o 

(9.36) 
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Fig. 9.13. 

The integral entering the right-hand side of (9.41) is a tabulated integral 
(a "probability integral"). 

Example 9.1. Let us return to the problem of estimating the "strength" 
of the rod tensioned by the force P (Fig. 9.1), using determinate (9.10) and 

probability (9.14) criteria. At deterministic (Ty and (T = ~ the "strength" is 

estimated by a factor of safety n 

(T 
n= ...J!.. 

(T 
(9.37) 

Given the random scatters of (Ty and (T a factor ii, equal to the ratio of 
mathematical expectations of (Ty and (T, is an analogue of the factor n 

(9.38) 

But the factor ii does not take into account the root-mean-square scatters 
of (Ty and (T. As mentioned above, when estimating "strength", we must use 
the "probabilistic" criterion of "strength", i.e. the probability of no-failure 
operation, in order to take into consideration all probability characteristics 
of (Ty and (T. 

We assume that the random quantities (Ty and (T have normal distributions 
(Fig. 9.14), i.e. the numerical values of the mathematical expectations (mery 
and m.,.) and standard deviations (Ter y and (Ter are known. 

If random quantities sand f are normally distributed, the reliability (the 
probability of no-failure operation) is equal to 

1 
H = P [(8 - F) > OJ = 0.5 + HL. 

v27l" 

where 

max-rna 

I exp {_~2} d/3, 

o 
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Fig. 9.14. 

The results of analysis at various values of the probability characteristics 
O'y and 0' are presented in Table 9.1. 

Table 9 .1. 

Mathema- Mathema- Mean Mean Safety Probability 
tical tical square square factor, of no-fai-
expecta- expecta- deviation, deviation it = m", lure ope-
tion of tion of O't7r of stress, mt7 ration, 
yield stress, mt7 17t7 P=H 
limit, mt7r 

5 . 104 2.104 5.103 2.103 2.5 0.9999 

5 . 104 2.5·10 5.103 2.5.103 2 0.9999 

5.104 3.33·10 5.103 3.33.103 1.5 0.9974 

5.104 3.8.104 5 . 103 3.8.103 1.3 0.9719 

5 . 104 4.17.104 5.103 4.17 . 103 1.2 0.8997 

5 . 104 4.35.104 5 . 103 4.37 . 103 l.15 0.8365 

5 . 104 4.55 . 104 5.103 4.55.103 l.1 0.7486 

When determining the reliability H, it was assumed that the root-mean­
square values of the scatters 0' y and 0' q were equal to 10 % of their mathe­
matical expectations. It follows from Table 9.1 that the probability of failure 
R (R = 1 - H) is not zero for all values of the safety factor. As one would ex­
pect the probability of no-failure operation is higher at large factors of safety 
n and lower at small n. How will the probabilities of no-failure operation 
corresponding to the factors of safety n = L15 and n = 1.1 change, if we 
take a higherquality material and reduce the possible scatter of load? 
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Fig. 9.15. 

For example, the root-mean-square scatters of O'y and 0' ( dependent on 
external load) are equal to 5 % of their average values. In this case the prob­
abilities of no failure operation are equal to: 1) at n = 1.15, H = 0.9726; and 
2) at n = 1.1, H = 0.9082, which is respectively 16% and 20% higher than 
their values at the 10 % scatter (Table 9.1) of the root-mean-square values of 
O'qy and O'q at the same factors of safety. Numerical values of the probability 
of no-failure operation enable us to investigate the sensitivity of a structure 
to the possible scatters of O'y and the random force P . 

As stated above, the absolute values of probabilities of no-failure opera­
tion are of little use, but the possibility of finding out how changes in the 
probability characteristics of allowable stresses and external load influence 
serviceability of a structure allows us to make an objective estimation of the 
structures quality. By comparing the probabilities of no-failure operation, for 
instance, at n = 1.1, we see, that a 5 % reduction in the root-mean-square 
values of O'y and 0' has resulted in the 20 % higher reliability. Let us deter­
mine, by way of example, the probability of no-failure operation of the bladed 
disk of a stage of the compressor of a turbojet engine (Fig. 9.15). During the 
operation of the engine the blades are elongated due to the axial distributed 
centrifugal forces resulting from the rotation of the disk and because of a 
temperature to. The angular velocity of the disks rotation wand the tem­
perature to have a scatter; as does a gap .1, therefore, in order to estimate 
the reliability of the disk it is necessary to determine the probability that the 
inequality (.1 - .1l) > 0 will be fulfilled 

H = P [(.1 - .1l) > 0]. 

Let us assume that distribution law ofthe gap .1 is equiprobabilistic (Fig. 9.16) 

.11 < .1 < .12 

.1 < .11 or .1 > .12 
(9.39) 



www.manaraa.com

9.4 Determination of Numerical Values of No-Failure Operation Probability 333 

f(11) 

f(11) 

Fig. 9.16. 

and L1l has the normal distribution (Fig. 9.16) 

f (L1l) = 1 exp {_ (L1l- ~LlI)2} . 
v2iia Lll 2a Lll 

(9.40) 

Having introduced a random quantity z = L1- L11, we find a distribution 
function F (z) 

F (z) = ! J f (L1, L1l) dL1 dL1l 

fJ(z<z) 

~ IMlZ Cl2 ~ 4,) ~a"i exp {~(41 ;a~·i)2}} d41. 

Differentiating with respect to z, we obtain 

Ll2 { 2} dF(z)=f(z)= 1 . 1 Jexp _[(L1-z);mLlzl dL1. 
dz L12 - L11 V'iiia Lll 2a Lll 

Lll 

(9.41 ) 

Having introduced a new variable t 

we obtain 
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where 

.11 - (Z + mtll) 
t1 = ; 

(Jtll 

.12 - (Z + mtll) 
t2 = . 

(Jtll 

For each given Zj the integral is expressed in terms of functions qi (tr) and 
qi (t2), that are presented in handbooks on higher mathematics 

1 
!(Zj) = .1 .1 [qi(t2,Zj)-qi(t1,Zj)] . 

2 - 1 
(9.42) 

By discretely changing z, we obtain the numerical values of the distribu­
tion law! (z) of the random quantity Z at discrete points (Fig. 9.17) . 

z 

Fig. 9.17. 

Having used spline functions, we can obtain, confining ourselves to some 
finite value Zn, which of the requirements on an accuracy a continuous func­
tion ! (z), and then determine also the no-failure operation probability on 
the interval (0, zn) 

00 z" 

p (z > 0) = f ! (z) dz ~ f ! (z) dz. 
o 0 

Having taken, for example, the following numerical values: 

.11 = 0.4 cm, .12 = 0.8 cm, mtll = 0.6 cm, (J tll = 0.06 em 

( _ (0.1 - z) 102 _ (0.5 - z) 102 ) 
t1 - 12 ,t2 - 12 ' 

we obtain as a result of calculations 
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p 

I 

Fig. 9.18. 

z 

a 
If!JJa 

P (z > 0) = 0.972. 

Let us estimate the reliability of the performance of a straight rod loaded 
with a compressive force P (Fig. 9.18) . The limiting state of the rod in this 
case is caused by the loss of stability. Therefore the condition 

Per - P > 0, (9.43) 

should be satisfied for the normal operation of the rod, where Per is the 
critical compressive force 

As Per and P have random scatters, we must determine the probability 
of no-failure operation 

P [(Per - P) > 0]. 

Let us take the following distribution laws for Per and P 

It (Per) = 8 (Per - PerO ) ; 

h (P) = ~O-P exp { - (P ;0-7P )2 } , 

where 8 is the delta function. 
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PkO 

Fig. 9.19. 

The distribution law f (Per) is shown in Fig. 9.19, i.e. Per is a deterministic 
quantity equal to PerO . 

Let us introduce a random quantity z 

Z = Per - P > o. (9.44) 

In order to determine the distribution law f (z) let us find the distribu­
tion function F (z), dependent on the joint distribution law of Per and P. 
Therefore at independent Per and P we can present this joint distribution 
law as 

f (Per, P) = 8 (Per - PcrO ) f (P) . (9.45) 

The distribution law F (z) is 

F (z) = f f 8 (Per - PerO ) f (P) dPcr dP. (9.46) 

D(Z<z) 

Fixing z, we obtain 

P = Per - Z, 

therefore, 

(9.47) 
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Differentiating F (z) with respect to z, we obtain 

00 

dF(z) / f (z) = -- = f (Pcr - z) c5 (Pcr - PcrO) dPcr 
dz 

-00 

or 

f (z) = f (PcrO - z) . 

Therefore 

f ( ) 1 {(Pcro - Z - mp )2 } 
Z = ---exp -

~~p 2~~ 

or 

f ( ) 1 {[Z - (PcrO - m p )J2 } 
Z =---exp - 2 . 

~~p 2~p 

Assuming that 

we obtain the probability of no-failure operation 

1 
P(z > 0) = ~ 

V 27r 

9.5 Determination of Reliability at the Linear 
Dependence of a Stress State on Random Loads 

(9.48) 

(9.49) 

Let us consider a more general case, when a random quantity F, character­
izing the loaded state of a structure linearly depends on concentrated and 
distributed forces (Fig. 9.20) 

(9.50) 

where P is the concentrated force and 9 is the distributed force. For instance, 
the maximum stress at the clamped end for the rod shown in Fig. 9.20 linearly 
depends on P and 9 

(9.51) 
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b 

~h 
p 

z 

/ ---- -+l 

Fig. 9.20. 

The probability of no-failure operation in this case is equal to 

(9.52) 

Depending on specific conditions both dependent and independent P and 9 
are possible. Let us first consider the case of P and 9 being independent and 
having normal distribution laws. As a preliminary let us consider the general 
case where random quantity Y is 

n 

Y = LaiXi 
i=1 

(9.53) 

and it is required to find its distribution law f (y) when the (normal) laws of 
Xi distribution are known. The operation of determining the distribution law 
of a sum of the independent random quantities Xi, having normal distribution 
is referred to as a composition of normal laws [13J. If we have a composition 
of normal laws, we obtain a normal law. Therefore the distribution law f (y) 
takes the form 

f(y)= 1 exp{_(y_n;y)2}, (9 .54) 
.../iii (jy 2(jy 

where 
n 

my = LaimXi' 
i=1 

n 

(jy = L a~(j;i' 
i=1 

For the considered problem y = kIP + k2g, therefore, we have 
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Considering that the random quantities 8 and Yare independent and 8 
has normal distribution, we obtain a distribution law f (z) for (Z = 8 - Y) 

1 {(Z - mz)2} 
f (z) = J27raz exp - 2a~ , 

where m z = kl + mp + k2mg - m s , az = .jktaJ, + k~a~ + a;. 
The probability of the systems no-failure operation is 

00 

H = P [(8 - (klP + k29)) > 0] = J f (z) dz. 

o 

Z-mz 
Going on to a new variable t = , we obtain 

az 

The algorithm of determining the probability of no-failure operation at 
a single or low-cycle loading presented in this section allows the solution of 
problems pertaining to the optimization of structure, as well as to the analysis 
of structures with a given reliability. 

9.6 Determination of the Probability of No-Failure 
Operation at the Nonlinear Dependence of the Random 
Quantity F on External Loads 

The problems of determining the probability of no-failure operation consid­
ered in the previous sections referred to the case where the function F linearly 
depended on loads and the state of stress of structural elements was uniax­
ial. Let us consider more complex cases where the function F describing the 
real state of a system non-linearly depends on external loads. It occures , for 
example, when the state of stress of structural elements is two-dimensional. 
A straight, rectangular cross-section rod loaded with forces Pl and P2 and a 
twisting moment M is shown in Fig. 9.21 a. The laws of distribution of Pl , 

P2 and M are considered to be known. There is a biaxial state of stress at 
the points A and B of the rod's section (see Fig. 9.21 b, c). The dangerous 
section is the section at Z = o. 

At point A (Fig. 9.21 a) we have 

M 
TA -

- ahb2 ' 
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A 

b) 

Fig. 9.21. 

• M 

l-----~ 

a) 

c) 

x 

CTp 
2 

z 

where a is the Saint-Venant factor (Table 9.2). At point B (Fig. 9.21 b) we 
have 

P2l 
ap2 = bh2 ; 7B = 117A · 

6 

Let us determine the probability of the equivalent stress at points A and 
B being less than the yield strength, i.e. 

P[(ay - ae ) > 0] . (9.55) 

Table 9.2. 

h 
1 1.5 1.75 2 2.5 3 

b 

a 0.208 0.231 0.239 0.246 0.258 0.264 

TJ 1 0.859 0.820 0.795 0.766 0.753 

h 
4 6 8 10 

b 
00 

a 0.282 0.299 0.207 0.313 0.333 

TJ 0.745 0.743 0.742 0.743 0.742 
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The probability P is the probability of the elements no-failure operation. 
Equivalent stress according to the distortion energy hypothesis is equal to 

ae = Ja2 + 372 . 

At p~ints A and B the equivalent stress is equal respectively to 

a~A) = VaIP? + a2M2, (9.56) 

a~B) = V(aIPI + a3 P2)2 + a4M2, (9.57) 

where al = (bh)-2, a2 = 3/ (ahb2)2, a3 = (b~2), a4 = 3'rf/ (ahb2) 2. If h > 

b, the shear stress (7 A) at point A is greater than that at point B, therefore, 
depending on the rods parameters (l, b, h) and the numerical values of PI, 
P2 and M, the maximum equivalent stress in the section can be either at 
point A or at point B. Therefore the probability of no-failure operation of 
the rod will be equal to the least of the probabilities 

P [( a y - a~A)) > 0] , 
P [( ay - a~B)) > 0] . 

The main difficulty in finding the probabilities of no-failure operation consists 
in the determination of the laws of distribution of a~A) and when equivalent 
stresses non-linearly depend on the external load. 

Let us consider the algorithm of approximate solution of this problem. 
Let us assume that 

where PlO, P20 , Mo are mathematical expectations of random quantities and 
LlPI , LlP2 and LlM are random scatters that follow certain distribution laws, 
for example, normal distribution laws (Fig.9.22) or Rayleigh distribution 
laws (Fig. 9.23). We consider that LlPb LlP2 and LlM are "small" random 
quantities (compared with mathematical expectations). For instance, if the 
random scatters follow normal distribution laws, then, using the three sigma 
rule, we can find their maximum values at zero mathematical expectations 
max LlPI = 13a L1Pl I , max LlP2 = 13a L1P2 1 , max LlM = 13a L1M I. Therefore, 
if Imax LlPj I « POj (j = 1,2) and Imax LlMI « Mo, the random quantities 
LlPj (j = 1,2) and LlM can be considered small. If the random quantities 
follow Rayleigh distribution laws, we can obtain'their maximum values from 
conditions 

(9.58) 
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8Pj 11M 

a) b) 

Fig. 9.22. 

f(11M) 

a) b) 

Fig. 9.23. 

Similarly, we can determine the maximum values of random scatters for 
other distribution laws, which is necessary to justify the assumption that 
LlPI, LlP2 , LlM are small and to linearize nonlinear functions (9.56) and 
(9.57). 

Let us consider the general case of the function F depending on a finite 
number of random quantities Xj : 

(9.59) 

where Xj = mOj + Llxj; (Llxj are small quantities). 
To find an approximate solution we must expand the function F in 

a series. A Taylor series for the function F in the vicinity of the point 
F (mXl , m X2 , • •• ,mXn ) is 



www.manaraa.com

9.6 Determination of the Probability of No-Failure Operation 343 

If we restrict ourselves by the linear part of the expansion, we obtain 

n 

F = Fo + LCj..1Xj, 
j=1 

where 

The probability characteristics of the stochastic function include: 
1). The mathematical expectation of F is equal to 

mF = Fo· 

2). The variance of the random quantity F (9.60) is 

For the independent random quantities ..1Xj we have respectively 

mF=Fo 
n 

DF = Lc~Dxi 
i=l 

As a result we obtain 

(9.60) 

(9.61) 

(9.63) 

(9.64) 

For the further solution we must obtain the distribution law of the fol­
lowing random quantity 

n 

Y = Fo + L Ci..1Xi , (9.65) 
i=1 

where ..1Xi are independent random quantities whose distribution laws are 
considered known. Let us confine ourselves to the case of the distribution 
laws of ..1Xi being normal. Then, using characteristic functions, we obtain the 
distribution law f (y). The characteristic function 9y of the random quantity 
y is equal to (t is a parameter) 
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gy (t) = M [eitY ] = M [exp {it (Fo + tCiL\Xi) } 1 
= eitFo M [}] eitc,Llxi 1 = e itFo }] gLlx, (Cit) . (9.66) 

The characteristic function of the random quantity Xj = CjL\Xj having 
normal distribution is [13, 29] 

Therefore, for the characteristic function gy (t) we obtain 

or 

(9.67) 

We can show that the characteristic function gy (t) corresponding to the 
normal distribution law [29J 

fey) = _1_ exp {_ (y - ~y)2} 
~Uy 2uy 

is equal to 

{ t 2
U

2
} gy (t) = exp itmy - T . 

The functions f (y) and gy (t) are connected by a Fourier transform, there­
fore the following normal distribution law 

f (y) = _1_ exp {_ (y - ~y)2}, 
~Uy 2uy 

(9.68) 
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n n 

where my = Fo + LCimLlxi; 0"; = LC~U~Xi corresponds to characteristic 
i=l i=l 

function (9.67). 
As regards the considered problem, for example, for the point B after the 

linearization of the equivalent stress we obtain 

(9.69) 

where 

u£B) = V(alPlO + a3P2o)2 + a4M~, 
auiB) al (alPlO + a3P2o) 

Cl=ap-= ./ ' 
1 V (alPlO + a3P2o)2 + a4M~ 

aO"iB) a3 (alPlO + a3P20) 
C2 = ap. =. / ' 

2 V (alPlO + a3P2o)2 + a4M~ 

ao-£B) a4M 
C2 = -- = ,=========== 

aM V(alPlO + a3P2o)2 + a4MJ 

At the normally distributed LlPl , LlP2 and LlM (Fig. 9.22) the distribution 

law f (O"iB ») is normal 

where 

m (B) = o-(B). 
(Te. eO , 

2 _22 22 22 0" (B) - Cl U LlP1 + £:20" LlP2 + C3o-LlM· "'. 
Therefore the distribution law f (z) of the random quantity z equal to z = 

= S - F = uy - u~B) at a normal distribution law is 

1 {(Z - mz)2} f (z) = rn= exp 2 2 ' 
y27ruz o-z 

where 
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The probability of no-failure operation is equal to 

(9.70) 

Let us consider the case of the random quantities L\P1, L\P2 having nor­
mal distributions (Fig. 9.22 a), and L\M having the Rayleigh distribution 
(Fig. 9.23 b). 

It is required to determine the reliability (9.64) for the case, where random 
quantities entering in the function F (x j ) 

n 

F (Xj) = 2::>jXj + b 
j=1 

(9.71) 

have different distribution laws. For example, Xj (j = 1, 2, ... , n - 1) have 
normal distribution laws, and Xn has the Rayleigh distribution. Let us present 
(9.71) as 

(9.72) 

where 
n-1 

y = LCiXi + b. 
i=1 

Having used characteristic functions, we obtain the distribution law of y that 
is a normal distribution law (9.68). 

Then, we find the composition of the distribution laws f (y) and fn (X~1)) . 

Let us introduce a random quantity Y1 equal to 

Y1 = Y + X~1). (9.73) 

According to the general algorithm that determines the distribution law of 
the sum of independent random quantities (9.23)-(9.26), we have 

00 

f(yd = J fn (x~1)) (9.74) 

o 

or 
00 

f (yd = J fn (X~1)) f (Y1 - x~1)) dx~1). (9.75) 

o 

The limits of the Y1 variation are from -00 to 00. As a result we obtain 
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Assuming that z = s - Y1 , we find the distribution law I (z) 

00 

I (z) = ! Is (s) I (s - z) ds. (9.76) 

-00 

Having determined I (z), we find the reliability of no-failure operation of a 
system at the action of independent random excitations that have different 
distribution laws 

00 

H = ! I(z) dz. (9.77) 

o 

If the integral is not tabulated, it can be approximately determined numeri­
cally. We must obtain in advance the values of I(z) in a set of discrete points 
and then using spline functions we must obtain continuous function I(z) on 
a bounded interval of z variation and to obtain H numerically. 
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10. Random Processes at the Action of 
Random Functions Bounded in Absolute Value 

10.1 Introduction 

During the presentation of the theory of random vibrations (see Chap.6-8) 
it was considered that all necessary information on random excitations (dis­
tribution laws or probability characteristics of random functions) is known, 
which allowed us to obtain the probability characteristics of the output based 
on the known probability characteristics of the input. 

Besides, a necessary condition for applying methods of the theory of ran­
dom processes is the repeated occurrence of a random event in practically 
homogeneous conditions. The application of the probability methods of anal­
ysis is worthwhile only at mass events. Very often, however, in the process 
of analyzing specific problems of the dynamics of mechanical systems, the 
necessary information on random excitations is either absent or its obtain­
ment represents a problem that is incommensurably more complicated and 
labour-consuming than the subsequent solution of equations of motion. 

The absence of necessary information on random forces complicates the 
solution of applied problems, while introduced assumptions and suggestions 
lead to highly approximate and poorly authentic numerical results. 

When solving problems related to the random vibrations of a motor vehi­
cle at the movement along a road with random irregularities (see Chap. 6), we 
considered that the necessary probability characteristics of the irregularities 
of the road are known. In order to obtain these probability characteristics 
a very large experimental work is required, therefore these characteristics 
are available only for a limited number of roads. Designing a structure (for 
example, a motor vehicle) demands that we should take into account the 
conditions of its operation. Only with due account of these conditions can 
we pose the problem of optimizing a structure and increasing its reliability. 
When external conditions are known (for example, the probability character­
istics of the external forces which will act on a structure), we can use methods 
of the theory ofrandom processes to determine internal forces (stresses) aris­
ing in the structure that allow us to judge its possible reliability. However, 
if the probability characteristics of external excitations are not known, these 
methods are of little use [32]. 

The service reliability of a structure substantially depends on how accu­
rately the external excitations or a structures operation conditions that have 
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f(f) 

t 

Fig. 10.1. 

been taken in an analysis represent the actual excitations or operation condi­
tions. In order to obtain the probability characteristics random functions we 
must have a large number of process realizations, which can entail great dif­
ficulties in experimental investigations or large material expenses. This gives 
rise to the problem of devising methods that would allow us to estimate the 
impact of random excitations on a mechanical system at an easily obtainable 
minimum of possible information about them. 

The easiest thing in experimental investigations of the random processes 
involved is determining the tolerance of a random quantity or the area of 
possible values of a random function. The area of possible values of a random 
function f (t), when the extreme values of the function f (t) are equal in 
absolute value and time constant is shown in Fig. 10.1. In what follows a 
random function given by the area of possible values will be referred to as a 
random function bounded in absolute value. Generally, the boundary of the 
area of possible values of the function f (t) can vary in time (Fig. 10.2). As 
information on the behaviour of the function f (t) inside the area of possible 

t 

Fig. 10.2. 
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values is absent, we may assume that this behaviour can be arbitrary, Le. 
the class of functions characterizing the possible behaviour of the random 
function f (t) includes, among other things, the class of sectionally-continuous 
functions with discontinuities of the first kind. The possible discontinuous 
behaviour of the function f (t) in time is shown in Figures 10.1 and 10.2 by 
the dash line. In physical terms a discontinuous behaviour of an excitation in 
time means an inertialess behaviour. Real random excitations have an inertia. 
For example, a random wind load can not change its direction instantly, which 
is tantamount to an instant change in the velocity of the wind. Therefore, 
the assumptions to the effect that any discontinuous behaviour of a random 
excitation is possible, are an idealization of the real behaviour of f (t) . In 
what follows it will be shown that this idealization leads to the worst possible 
actions on a system. 

In order to elucidate the basic features of dynamic problems at the action 
of discontinuous excitations bounded in absolute value, let us consider the 
following example. 

Example 10.1. A body of a mass m moves horizontally under the action 
of a force R (Fig. 10.3). The force R has a scatter LlR (t) , with ILlRmaxl = a = 
= const (Le. LlR (t) is a random function bounded in absolute value (Fig. 10.4). 
We can present the force R as 

R(t) = Ro (t) ± LlR(t), (10.1) 

where no (t) is the design value of the force R. 
If we ignore all forces other than R, the equation of motion of the mass 

m takes the form 

x(t) = .!R. 
m 

(10.2) 

~.---.-.-.-.-.- .- .-.-.-~ 
.. 
x 

Fig. 10.3. 

It is required to determine the greatest possible scatters of x and X, which 
the body can have at the given time instant tk at the action of the random 
force LlR given by the area of its possible values. The displacement x can be 
presented as 

x (t) = Xo (t) + Llx (t) , (10.3) 
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tlR(t) 

Fig. 10.4. 

where Xo is the displacement corresponding to the design value Ro; Llx (t) is 
the possible scatter of the displacement caused by the random force LlR (t). 

The equation of the body's disturbed motion is 

Llx (t) = ~LlR. 
m 

Assuming that 

we obtain a system of equations 

Xl = f (t) ; 

LlR 
where f (t) = -. 

m 

(10.4) 

(10.5) 

(10.6) 

Certain values Llx and Xk at the time instant tk correspond to each pos-
sible behaviour of LlR (t). As the time of the process and the force LlR are 
bounded, LlXk and LlXk will be bounded as well. Therefore, when using the 
phase plane, its points (LlXk' LlXk) will correspond to each possible behaviour 
of LlR (t) with the points being localized in the bounded area of the phase 
plane. In Fig. 10.5 the area of possible values of LlXk and LlXk is shaded. The 
displacement Xk and the velocity Xk correspond to the design condition of the 
bodys motion at the time instant tk' It follows from the boundedness of the 
area of possible values that there is a limit curve covering this area (methods 
of determining the area of possible values of the solutions of the equations 
of motion of a system will be presented below). The limit curve divides the 
phase plane into two areas: the area of LlXk and LlXk values whose realiza­
tion is possible (the shaded area) and that of LlXk and LlXk values which will 
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x 

x 

Fig. 10.5. 

never be realized (at the given area of possible values of LlR), for example 
the values of LlXk and LlXk corresponding to the point A in Fig. 10.5. 

The knowledge of the area of possible values of LlXk and LlXk allows us 
to answer a number of practically important questions, in particular, what 
maximum values of LlXk (Point a) and LlXk (Point b) are possible at the 
most unfavourable laws of LlR (t) variation, in what manner the sizes of the 
area depend on the parameters of a system and how, in this context, we can 
choose the parameters of a system, at which the area reaches its minimal 
sizes. 

Let us determine the area of possible values of the solution of system 
(10.6) which (at zero initial data) may be presented as 

tk 

Xl = / f (7') d7'; 
o 

(10.7) 

Relationships (10.7) do not take into account the discontinuous behaviour 
of f (7') , therefore let us obtain the expression for Xl and X2 with due account 
of the possible discontinuous behaviour of f (t) on the time interval (0, tk) . 
Suppose, for example, that at the time instant t' (t' < tk) the function f (t) 
reverses sign (dash line in Fig. 10.4). For the sake of definiteness we may 
consider that it was equal to +a up to t', and to -a after it, Le. 

0::; t ::; t'; 
t < t ::; tk' 

(10.8) 
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At such variation of the function f (t) we obtain 

t' tk 

Xl = J adr - J adr, 
o 0 

t' tk 
(10.9) 

X2 = a J (tk - r) dr - a J (tk - r) dr 
o v 

or after integration 

Xl = (2t' - tk) a; 

X2 = -~ [(tk _t,)2 -t~] + ~ [- (tk - t')2] . 
(10.10) 

The function f may also behave in somewhat different manner, being 
f = -a, from zero to t' and f = +a from t' to tk ' At such law of f variation 
the signs in front of the integrals in the right-hand side of expressions (10.9) 
reverse, i.e. the values Xl and X2 can be of opposite signs. The area of possible 
values of Xl and X2 at t = tk is limited by curves (10.10) given in parametric 
form . If we put tk = I, the expressions for Xl and X2 will be 

Xl = (2t' - 1) a; X2 = a (2t' - ~ - t'2) at 0 ~ t' ~ 1. (10.11) 

Expressions (10.11) give only one branch of the limit curve, the second one 
being symmetric (with respect to the origin of coordinates), as the values of X l 

and X2 equal in magnitude but opposite in sign are possible. In Fig. 10.6 the 
area of possible values is shaded, occupying only part of the area plotted on 

Fig. 10.6. 
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the maximum values of Xl and X2 if the function f had only one discontinuity 
on the interval (0, tk)' What values will the functions Xl and X2 take if the 
function f has two or more discontinuities? It may be that we shall obtain a 
point located on the plane (Xl, X2) and lying outside the shaded area. Let us 
consider the case of the function f having two discontinuities at the instants 
t' and t" (t" > t') . 

{
a 0 < T < t" 

f = - a t' < T < elj 
a t" < T < tk' 

(10.12) 

On integrating the expressions for Xl and X2 will be as follows (at tk = 1): 

Xl = (2t' - 2t" + 1) aj 

X2 = i [1 + 2 (1 - t,,)2 - 2 (1 - t,)2] . 
(10.13) 

Let us take two arbitrary time instants t' = O.4j t" = 0.6 and substituting 
in the values of Xl and X2, we obtain Xl = 0.6aj X2 = 0.3a. 

Judging from Fig. 10.6 where this point is placed in the shaded area, no 
worse case has occurred. The law of functions variation (with one disconti­
nuity) that was taken when plotting the area turned out to be the most ob­
jectionable. In what follows it will be shown that for this system of equations 
the worst law of function variation is, in fact, that with one discontinuity. 
In this particular example such law of the function f (f = const) variation 
on the whole time interval is possible when the simultaneous maxinIum of 
the functions Xl and X2 is reached at t = tk (with simultaneous maxima of 
only one sign being possible). What will happen with the area if the function 
varies in wider bounds, for example, inside a band limited by straight lines 
±2a (instead of ± a, as in the example)? 

It is easy to establish from expression (10.13) that the functions Xl and X2 
would be two times greater, i.e. the area would become larger, but its form 
and position inside the rectangular area would not change. Such increase 
or decrease in the tolerance for the functions perturbation leads to a similar 
change in the area of possible values of the solutions of a system of differential 
equations. In the considered example the area of possible values of Xl and X2 

proved symmetric with respect to the origin of coordinates, but this is not 
always the case. The position of the area of possible values of the solutions 
of a system (for the considered example ofthe functions Xl and X2) depends 
on the boundaries of possible excitations (of the function f in the given 
example). Let us plot the area of possible values of Xl and X2 for the function 
f, specified inside a band shown in Fig. 10.7. Let us first consider a case of 
the function f variation shown in Fig. 10.7 by a solid line. In this case the 
function f is given as 

f = {a at 0::; T::; t'j 
o at t'::; T ::; tk' 

(10.14) 
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f(t) 

t 

Fig. 10.7. 

Having made the necessary calculations, we obtain at tk = 1 

At a change in the function f 

f = {O at 0 ::; T ::; t'; 
a att'<T::;tk. 

Xl and X2 are of the form 

Xl = 1- t'; 1 ( ,)2 
X2 = - 1- t 2 . 

(10.15) 

(10.16) 

Systems (10.15) and (10.16) define the equation of the limit curve (two 
branches) with the corresponding area being shown in Fig. 10.8. In the con­
sidered examples the boundaries of the area within which the function f 
varied were constant in time. Similarly, we can determine the area when its 
borders depend on time t, as, for example, is shown in Fig. 10.2, i.e. 

m (t) ::; f (t) ::; M (t). (10.17) 

Generally, several random excitations !k (t) bounded in absolute value 
and satisfying the conditions 

O.Sa t----,---.-----y--r--==-_ 

Fig. 10.8. 
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mi (t) ::; Ii (t) ::; Mi (t) (i = 1,2, ... , k) , (10.18) 

can act on a system, where mi (t), Mi (t) are known functions of time that 
represent the bottom and top boundaries of the possible values area within 
which the function Ii can take any values. The limiting values of the function 
Ii (mi and M i) can be independent on time t. The set of functions satisfying 
conditions (10.18) includes, among other things, deterministic functions vary­
ing in time according to known laws but remaining within the area of possible 
values. The functions satisfying condition (10.18) can embrace those retain­
ing constant random values during the whole process, for example, random 
initial data. Let us introduce a notation IP for random functions retaining a 
constant numerical value during the process. The functions IP can take any 
value within the interval 

(10.19) 

Restrictions on excitations of the (10.18) or (10.19) type have a definitive 
physical meaning and characterize the utmost possible deviations of excita­
tions that can occur in a given system. As regards technical problems involv­
ing excitations Ii that evaluate the scatters of the forces or the parameters 
of a system, the tolerances for the deviations of these quantities from their 
nominal values can be determined with a sufficient accuracy. 

Random functions Ii and random quantities IP that satisfy conditions 
(10.18) and (10.19) respectively, are independent. For example, if two random 
functions II (t) and h (t) meeting conditions (10.18) act on a system, their 
possible values are inside rectangular area (Fig. 10.9) at any time instant. In 
this case the components of the vector of excitations are independent. 

(f) 

Fig. 10.9. 
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Fig. 10.10. 

Along with independent random excitations, dependent random excita­
tions limited in absolute value can occur. Let us consider as an example a 
mass m (Fig. 10.10) subjected to the action of a force f that is randomly 
directed (angle a is random) and limited in absolute value If I :::; a. The mass 
is attached to an inertialess elastic rod. Let us confine ourselves to deriving a 
condition that should be satisfied by the projections of the force f onto axes 
X and Y. Force f projections, fx, and fy , equal to 

fx=fcosa; fy=fsina. (10.20) 

will enter in the equations of motion of the mass m written in the projections 
on the axes X and Y. 

From (10.20) we can obtain a relationship 

f; + f; = f2, 

but since f is limited in absolute value 

If (t)1 :::; a = fm 

we have 

(10.21) 

i.e. the possible values of excitations are bounded by the area shown in 
Fig. 10.11. In a more general case, the force f can also have a projection 
onto the axis Z, therefore relationship (10.21) takes the form 

(;:)2 + (;:)2 + (;;)2 :::; l. (10.22) 

Condition (10.22) can be written in a more general form 

(Cf· f) :::; 1, (10.23) 
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Fig. 10.11. 

where C is a completely positive, self-adjoint square matrix. The left-hand 
side of condition (10.23) represents a completely positive quadratic form. 

Two types of random excitations Ii (t) satisfying (10.23) are possible: 
a) Ii (t) do not depend on time, Le. they are the excitations of the IP type; 
b) the random excitations Ii (t) can be presented as Ii = hi (t) IP, where hi (t) 
are known functions dependent on time. In the b) case random excitations 
Ii meeting (10.23) vary in time. The principal problem connected with the 
analysis of the non-stationary vibrations of a mechanical system at the action 
of excitations that meet limitations (10.18) or (10.19) and (10.23) can be 
formulated as follows. It is required to determine the area of possible values 
of a vector y that describes the disturbed state of a system at a fixed time 
instant tk , if the components of the vector of excitations are random functions 
satisfying conditions (10.18) or (10.19) and (10.23). 

The special cases of the formulated problem are: the problem of deter­
mining the projection of the n-dimensional area of the possible values of the 
system state vector at non-stationary vibrations onto two-dimensional planes 
(areas similar to that presented in Fig. 10.6) and the problem of determining 
the greatest possible values of each of the components Yi of the state vector 
y at a fixed time instant. 

10.2 Determining the Maximum Values of the 
Components of the Systems State Vector 

Let us consider the vector equation of motion of a system that has the form 

y + A (t) y = B (t) f (t). (10.24) 
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The solution of equation (10.24) at non-zero initial data is 

tk 

y=K(tk)YO+ J G(tk,r)B(r)f(r)dr. 

o 

(10.25) 

The numerical method of determining the Green matrix G (tk> r) is pre­
sented in Chap. 5. 

The components of the initial values vector Yo are random numbers sat­
isfying the following conditions (considering YOj as given by areas of possible 
values) 

(10.26) 

where (YOj)min and (YOj)max are known values. 
At first, let us consider the case of the components of the vector f being 

independent, i.e. satisfying conditions (10.18) 

In scalar form the m-th component of the vector is 

n p tk 

Ym (tk) = L kmjYoj + L J dmvIv dr , 
J=l v=lO 

(10.27) 

where p is the number of the components of the vector f, which is not neces­
sarily equal to n; dmv are the elements of the matrix D = G ( r) B ( r) . The 
maximum value of Ym is 

n p k 

max (Ym) = L max (kmjYoj) + Lmax J dmvIvdr . 
J=l v=l 0 

(10.28) 

The maximum values of the terms dependent on the components of the 
initial values vector are reached at the following values 

{ YOj max at kmj > 0; 
YOj = YOj min at kmj < O. 

(10.29) 

The maximum values of the integrals dependent on I v correspond to the 
following variation laws of excitations Iv (r): Iv (r) = Mv (r) on time r 
intervals, where dmv (r) > 0 and Iv (r) = mv (r) on time r intervals, where 
dmv (r) < 0, i.e. 

f = {Mv at dmv > 0; 
v mv at dmv < O. (10.30) 
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For example, if Tj are the values of time where the functions dmv reverse 
sign, the maximum values of the integrals entering the right-hand side of 
(10.27) (for the sake of definiteness we assume that on the first interval from 
o to T(v) dmv > 0) are 

tk r~v) rJv) 

max ! dmvfvdT = ! dmvMvdT + ! dmvmvdT + ... (10.31 ) 

o 0 r~v) 

In the particular case of 

the maximum value of the component Ym is 

n k tk 

max (Ym) = L Ikmjl aj + Lbj ! Idmjl dT. 
J=l J=l 0 

(10.32) 

As a result, we determine the greatest possible values of each of the com­
ponents Ym of the system state vector (10.28) at a fixed time instant, for 
example, at the time instant corresponding to the loss of contact between 
the rocket and the guide (Fig. 0.2). 

The presented method makes it possible to determine not only the great­
est possible values of the components of the system state vector but also 
the corresponding worst laws of the variation in time of random excitations 
bounded in absolute value. The worst laws of the variation in time of the 
excitations Ii which impart maximum values to each of the component Ym 
of the state vector are different, i.e. these laws cannot occur at a single real­
ization of the process. The knowledge of the greatest possible values of the 
components of the system state vector is very useful because these values are 
guaranteed. 

10.3 Areas of Possible Values of the System State 
Vector at the Action of Independent Excitations 

The modulus and direction of a state vector y will change depending on the 
variation in time of the components of the vector f. Owing to the boundedness 
of the components of the vectors f and Yo and conditions (10.18) and (10.19), 
the vector y will also be bounded at a finite time interval tk (Fig. 10.12). 
Therefore, all points of the n-dimensional phase space can be divided into 
two sets: the set of points, which can be reached by the vector y at all possible 
variations of the vector f, and the set of points which vector y can not reach. 
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Fig. 10.12. 

Let us assume that the maximum values of the projection of the vector 
y onto the directions determined by a unit vector Q are known. Drawing 
hyperplanes through the ends of these projections at different Q and perpen­
dicularly to them, we obtain some closed area contained within the planes. 
As the unit vector Q depends on n - 1 parameters (projections onto coordi­
nate axes), we obtain the n -1 parametric family of hyperplanes. The earlier 
described geometrical method of obtaining the area is essentially related to 
the assumption that the area is convex, i.e., if any two points belong to the 
boundary of the area, all points of the straight-line segment connecting the 
two points belong to the area. For example, if a vector f O) defines point 1 
(it corresponds to a state vector y(l) resulting from the action of the vector 
f(1), while a vector f(2) defines point 2 (vector y(2»)), than vector f 

f = Af(l) + (1 - >.) f(2) (10.33) 

defines all points of the straight-line segment connecting points 1 and 2, 
when>. changes from 0 to 1. The system state vector at a given f can be 
presented as 

y = >.yO) + (1 _ >.) y(2), (10.34) 

and at the continuous variation of >. from 0 to 1 the vector y runs through all 
points of the straight line connecting the ends of the vectors y(1) and y(2). 
This testifies to the fact that all vectors y (at 0 ~ >. ~ 1) lie inside the area 
of possible values, i.e. the area is convex. 

Having determined the maximum values of the projections of the vector 
y for each direction of the vector Q, we can proceed to the determination of 
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a limit surface. The projection of the vector y onto the direction determined 
by the unit vector a with components ((};1, (};2, ... (};n) can be written in the 
following form (Fig. 10.12): 

or 

Ypm = (y ·a) 

n 

Yprcr. = LYi(};i. 
i=l 

(10.35) 

(10.36) 

By substituting the expressions obtained for Ym (10.27) in condition 
(10.36) we get 

n n tk 

Ypm = L rjYOj + L j qj (tk' r) fJdr, 
J=l J=l 0 

where 

n 

rj = L kij(};i; 
i=l 

n 

qj (tk' r) = L d;j(};i. 
i=l 

(10.37) 

(10.38) 

(10.39) 

The components of the vector f can, among other things, include excita­
tions UP) that do not vary in time, therefore let us present expression (10.37) 
as one explicitly dependent on fj and f~ 

n n k k 

Ypm = LrjYoj + L j qj (tk,r)fJdr+ LQef~, 
J=l J=10 v=l 

(10.40) 

where 

tk 

Qe= jqv(tk,r)dr, (p+k=n). 

° 
The problem of finding the area of possible values of a systems disturbed 

state vector y has reduced to the determination of the greatest possible value 
of expression (10.40) at restrictions met by the functions YjO, fJ and f2 
that maximize the afore-mentioned expression (10.40) with the functions fJ 
belonging to a closed set. This condition means that these functions may also 
have their limit values, i.e. on some interval of time (tI' t2) fJ can be equal 
to its limit values, for example 
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h = mj (t) 
Ij = M j (t) 

(tl ~ t ~ t 2 ) , 

(h ~ t ~ t2). 
(10.41) 

Let us show that the extreme values of vectors y (tk) (Fig. 10.12) forming 
the limit surface are reached on the class of discontinuous functions h that 
satisfy conditions (10.18). Then we separately determine the maximum value 
of each of the sums entering the right-hand side of expression (10.40). Next 
we find the maximum value of the first sum 

n 

Erj (tk)YjO 
j=l 

(10.42) 

with the conditions Yim ~ YjO ~ YjM being fulfilled, where Yjm, YjM are 
the minimum and maximum possible values of YjO respectively. Sum (10.42) 
takes the maximum value, if YjO are equal to YjM at rj (tk) > 0 or YjO are 
equal to Yjm at r j < o. 

The maximum value of the second sum in (10.40) can be obtained if 
we take h (r) according to the band upper bound in those intervals of the 
variation of r, where % (tk' r) > 0 and according to the lower bound where 
qj (tk' T) < 0, i.e. the extreme value of the sum 

is reached within the functions of the following type (discontinuous functions) 

(10.43) 

as was to be shown since the laws of the variation of h that give an extremum 
to a scalar product (y. a), also define the extreme values of the vector y (tk). 

In order to determine the discontinuity points of the function h let us 
determine Tjk where qj (tk' T) reverses sign. In order to determine Tjk we have 
an equation 

Knowing rjk, we determine the variation laws of h (r) giving a maximum to 
the appropriate term in expression (10.40). The maximum value of the third 
sum can be obtained, if we take I~ equal to its maximum value at Q~ > 0 
and to its minimum value at Q~ < o. Thus, for each direction a such values 
of YjO, I~ and the function Ij are determined at which the projection of the 
vector y (tk) on this direction takes its maximum value. Knowing YjO, I~ and 
Ijct, we determine the components of the vector y (tk) that are coordinates 
of points of the vector y (tk) region of possible values 
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n n ~ k 

Yi = L kijYjo + L J dijl10dT + L ~v/~, (10.44) 
)=1 )=1 0 v=l 

where 

tk 

Viv = J divdT. 
o 

tk 

The integral J dij IlodT with due account of the variation law of the 

o 
function Ijo can be calculated in terms of antiderivatives 

Tj,k+l 

Flt (T) = J dijMjdT; 
Tj,k 

(10.45) 
Tj,k+l 

Ftj (T) = J ~jmjdT, 
Tj,k 

Then 

tk . J ~jlldT = Flt (Tjd + [FD' (Tj2) - Frj (Tjl)] + ... , (10.46) 

o 

tk J ~jlldT = Frj (Tjl) + [FiJ (Tj2) - Flt (Tjl)] + ... , (10.47) 

o 

if qj (tk,T) < 0 at O:S: T:S: Tjl' 
Let us consider the special case of the boundaries of the area of possible 

values of the random excitations Ij being constant in time 

(10.48) 

For this class of excitations the maximum value of the second term in 
expression (10.40) will be equal to 

(10.49) 
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In spite of the fact that the initial equations are linear, the problem in­
volving the determination of the area of possible deviations of the solutions 
of a system at a fixed instant of time, is nonlinear, since the worst actions of 
excitations (the time instants of the transition of excitations from one bound­
ary curve of the area of possible values to another) occur at time instants 
dependent on the properties of a system rather than externally given time 
instants. The area of possible deviations retains its configuration (in the sim­
ilarity context) given a proportional variation of all excitations. At a similar 
variation of excitations we have 

(10.50) 

where /3 is a scalar multiplier. 
Conditions (10.18) and (10.19) change accordingly and expressed as 

In consequence of the linear dependence of the solution of equation (10.25) 
on the vector of excitations, the vectors y (tk) that determine the limit surface 
also change by the factor /3, i.e. a similar variation of the vectors f and fO 
results in a similar variation of the area of possible deviations. 

Example 10.2. The dynamically stable motion of a rocket can be accom­
panied by its small vibrations on a trajectory that are caused by a scatter in 
the thrust of the engine, the linear and angular misalignments of the thrust 
and a number of other factors. The equation of the small angular vibrations 
of the rocket (Fig. 10.13) in pitch is of the form 

(10.51) 

where Jo is the rocket's moment of inertia with respect to the axis going 
through the center of gravity (perpendicular to the plane of the drawing) ; 

Fig. 10.13. 
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Mb 
b ~~~~~"""~~~~~""~ 

Fig. 10.14. 

Mb is the random exciting moment (caused, in particular, by the gasdynamic 
misalignments of the thrust) whose value is usually known in the form of 
some field of scatter (Fig. 10.14) that has the boundaries of ± b; acp is the 
restoring moment. It is required to determine the area of possible values of 
the angle cp and the angular velocity <,b( the area on the phase plane (<,b, cp)) 
at the time instant tk = 5 s. When solving the problem, we consider that at 
t = 0 cp (0) = <,b (0) = 0 Jo = 104 kgm2 , a = 1,6.104 N·m, Ibl = 200 N·m. 

We may present the solution of equation (10.51) at the time instant tk as 
a vector tpk on the phase plane <,bOcp (Fig. 10.15). The vector of solution tpk 

corresponds to each variation law of the exciting moment Mb . 
There is such law of variation of the moment Mb at which the modulus of 

the vector tpk directed at an angle w to the axis cp reaches its greatest value 
(Fig. 10.15). If we change the value of the angle a within the limit 0 -7 271" and 

Fig. 10.15. 
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determine ICPlmax ' for each intermediate value of a, the end of the vector CPk 
will circumscribe some closed curve on the phase plane, Le. the boundary of 
the area of possible values. 

Let us determine the greatest possible values of CPk and <Pk: 

(10.52) 

(10.53) 
. b jtk 

CPkmax = Jo Icospo (tk - r)1 dr. 
o 

In order to determine the boundaries of the area of possible solutions 
let us project the vector CPk onto the straight line determined by the unit 
vector a 

(10.54) 

Having determined the maximum value of the projection of the vector of 
solution CPa for a fixed value of the angle a and the variation law of Mb that 
corresponds to CPOl.max, we find the values of the components of the vector 
CPk' i.e. the values of CPk and <Pk, which are the coordinates of one of a point 
of the boundary of the area of possible values of solutions. As the solution of 
equation (10.51) takes the form of (10.52), we obtain the following expression 
for projection of the vector CPk (10.54) 

tk 

CPa = -/!-jsinpo (tk - r + a) Mbdr. 
JOPO 

o 

For example, at a = i expression (10.55) is 

tk 

CPa = Jo~o j sin [po (tk - r) + i] Mb dr. 
o 

(10.55) 



www.manaraa.com

10.3 Areas of Possible Values of the System State Vector 369 

Assuming that sin [PO (tk - r) + iJ = 0, let us determine ri, the instants 

of the sign reversal of M b . 

Taking into account that Po ~ O.4n, at tk = 5 s, we determine r1 = 
= 0.42s; r2 = 0.29s. 

Hence, the variation law of the moment Mb , at which tpo: reaches the 
maximum value at the moment tk, can be expressed as 

{ 
+b at 0 < r < 0:42; 

Mb = -b at 0.42:::; r :::; 2.9; 
+b at 2.9:::; r :::; 5.0. 

Let us calculate the value of tpk for the obtained variation law of the 
moment Mb: 

[

0.42 2.9 

tpk = _b_ ! sinpo (tk - r) dr - ! sinpo (tk - r) dr 
JoPo 

o 0.42 

5.0 1 
+ ! sin Po (tk - r) dr = 3.494 Jo~~ . 

2.9 

Similarly, we find CPk for a = i 
. b 

tpk = 1.94~. 
"oPo 

Having made similar calculations for various values of the angle, we obtain 
the following data given in the table: 

Table 10.1. 

a 0 30° 60° 900 

tpk 5.10-2 4.3.10-2 2.4.10-2 0 

<{;k/PO 0 2.4.10-2 4.3.10-2 5.10-2 

. The area of possible values of solutions in non-dimensional coordinates 
plotted in accordance with the given data is shown in Fig. 10.16. 

Let us consider problem 10.2, using the theory of random processes. For 
this purpose, let us supplement the available information on the random mo­
ment (field of possible values) with the probability characteristics of Mb , by 
relating them to the restriction taken for Mb (IMbl < b). Let us assume that 
Mb is a stationary random function with a time-constant normal distribution 
law (Fig. 10.17) and a correlation function of the following type 

KMb = DMe-o:1rl . 
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<PK 
Po 

Fig. 10.16. 

~'0' 

·2 
-5'10 

Mb 

+br----------r~~-------------

Or-------~_+----_r------~ 

-br-----------~-------------

Fig. 10.17. 

It would appear reasonable to assume that the greatest possible values 
of Mb are connected with the variance C1M by the relationship (three sigma 
rule) b = 3C1M, hence, DM = b2 /9 . 

The correlation function of the solution of equation (10.51) (confining 
ourselves to the angle <p) is (see Chap. 5) 

tl t2 

K<p = ~;6 J J sin Po (tl - 71) sin Po (t2 - 72) e-a:ITI-T2Id71d72. (10.56) 

o 0 
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For the purpose of integration let us present expression (10.56) without 

the modulus sign K<p = K~) + Kr): 

(10.57) 

K~ = ~;51 sinpo (t2 - T2) [J sin Po (tl - Tl) e-a (T2- Tl)dTl 

o 0 

+ J sin Po (iI - Tl) e-a(r, -T2) dT2] dT2 at tl > t2· 

T2 

(10.58) 

By way of integration and manipulation we obtain the expression for the 
variance of the solution 

(10.59) 

Having made the necessary calculations, we obtain the root-mean-square 
value of the angle <p 

b 
fJ<p = 0.5972". 

JOPo 
(10.60) 

Considering that for the angle <p a normal distribution is true, we obtain 

b -5 
<Pmax = 3fJ<p = 1.7772" = 2.2·10 , 

JOPo 
(10.61) 

that is approximately 2 times less than the value for <p in the table at 
Q = O. The presented method with the use of discontinuous random functions 
bounded in absolute value gives higher values of the maximum deviations of 
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systems from the undisturbed mode, as the worst variation law of the ex­
citation Mb , is unlikely if we estimate it in the context of probability. The 
obtained value of <Pmax (10.61), according to the correlation theory, is mean­
ingful as a characteristic of the process only in the case of mass realization, 
i.e. when, for example, the disturbed motion of a large number of rockets is 
estimated on the average. Naturally, the average characteristics of the process 
(for example, the maximum values of the angle <P = 3<7..,) are smaller than 
values <P (10.53) that can occur for individual rockets. If we have only one 
or two realizations of the process, average characteristics are of no avail, be­
cause it is impossible to reveal the statistical properties of the given process 
at such a small number of realizations. The value <p, found with the use of 
discontinuous random functions bounded in absolute value is guaranteed. 

10.4 Projections of the Area of Possible Values of the 
System State Vector Onto Two-Dimensional Planes 

The area of possible values is n-dimensional for a set of equations of the n-th 
order. In practical analysis it is often sufficient to know the area of possible 
values of two components of the system state vector, i.e. it is enough to know 
the projection of an n-dimensional area onto a two-dimensional plane. 

Let us consider the scalar product of the vector of solutions y and the 
vector Q lying in a plane defined by two unit vectors WI and W2 (Fig. 10.18) . 

Fig. 10.18. 
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We consider the most general case where the plane defined by the vectors 
"'1, "'2 does not coincide with the coordinate planes. It is possible to present 
the vector a as 

or 

(10.62) 

The projection of the vector y onto the direction of the vector a is 

Ypra = (y, a) = (Y"'l) cos a + (Y"'2) sin a = YWl cos a + YW2 sin a 

= cos a [~(YiWli) 1 + sin a [~ (YiW2li) 1 ' (10.63) 

n 

Ypra = L (T1j cos a + T2j sin a) YjO 

j=l 

P tk 

+ ~! [q1j cos a + q2j sinal IIdr 
1=10 

k 

+ L[VIV cosa + V2v sinalf2, 
v=I 

(10.64) 

where 
n 

Tlj = L ~j (tk) Wli; 

i=I 
n 

T2j = L ~j (tk) W2i; 

i=I 

n 

qlj = L QijWli; 
i=I 

n 

q2j = L QijW2i; 

i=I 

n 

Vlj = L'VijWli; 

i=I 
n 

V2j = L'VijW2i. 
i=I 

(10.65) 

In the specific case of the vectors "'1 and "'2 coinciding with the coordi­
nate axes, Le. "'1 = ek; "'2 = ev , we obtain 

Tlj = Kkj (tk); qlj = Qkj; q2j = QVj; 

T2j = KVj (tk) ; Vlj = Vnj ; V2j = VVj . 

The values of YjO are determined depending on the sign of the expression 

T1j cos a + T2j sina. 

The maximum value of the sum of integrals is reached at the following 
variation laws of random functions: 

1; = M j , at [qlj cos a + q2j sinal> 0; 

1; = mj, at [qlj cos a + q2j sinal < o. 
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The maximum value of the sum dependent on time-constant random ex-
citations is reached at values 1~ equal to 

12 = M2, at [VII.' cos a + V2v sin a] > 0; 

12=m~, at [Vlvcosa+V2vsina] <0. 

After determining Yj and 1; for each a (J;c" we derive Yi(tk)) (10.44) and 
than YWI and YW 2 that are coordinates of two-dimension region border points. 

10.5 Determination of the Maximum Values of Dynamic 
Reactions 

When analyzing the motion of a system of bodies it is often required to 
determine not only the system "state" y (coordinates and velocities), but also 
the force interaction (reactions) between the separate bodies of a system. We 
may present the following problem as the simplest physical model of similar 
problems. A weight of a mass m moves at a velOcity v on an absolutely rigid 
beam with an elastic fixation (Fig. 10.19 a). The right support of the beam 
represents a spring with a stiffness c and a viscous friction damper (coefficient 
of friction is a). A random force 1 (t), bounded in absolute value acts on the 
mass m. A reaction force N that depends on the time behaviour of a function 
1 within the area of possible values takes place between the beam and the 
mass m. It is required to determine in analysis the greatest possible value of 
the dynamic reaction N arising between the mass m and the beam. 

To carry out a strength design we must know the greatest possible values 
of the reaction force for each instant of time. The value of the reaction· at 
each time instant depends on the behaviour of the function 1 (t) from the 
beginning of the motion up to the given moment. A certain value of the 
reaction will correspond to each possible behaviour of the function 1 (t) in 
an interval (0, tl)' where tl is the arbitrary instant of time corresponding 
to the position of the mass m, shown in Fig. 10.19 a. This being so, amongst 
infinite set of possible behaviours of the function 1, including discontinuous 
variations in time, there is a variation law of 1, that gives a maximum value to 
the reaction at the moment h. If we use the kinetostatics method during the 
derivation of the equations of motion of a system, we shall obtain equations 
that algebraically (Le. without derivatives) embrace unknown reactions. Let 
us consider the general case of the motion of the system, assuming that the 
equations of the systems motion contain k unknown reactions entering in 
these equations algebraically. Here the complete system of n equations can 
be divided into two subsystems (including equations of constraints, with the 
constraints being considered bilateral) that can be presented in a vector­
matrix form as 

AlO:h + All:h + A 12YI + A 13Z = Blf1; 

h + A2lYl + A22Yl + A23 Z = B2 f2. 
(10.66) 
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Fig. 10.19. 

where Yl is a vector with n - k components that are the generalized co­
ordinates of the system; z is a vector with k components formed from un­
known reactions; fl' f2 are vectors whose components are random excitations 
bounded in absolute value and satisfying condition (10.18); Aij , Bll B2 are 
matrixes whose elements in the general case can be functions of time. 

In what follows we consider that the dimensionality of the vectors fl 
and f2 is equal to n - k. In system of equations (10.66) the matrixes 
A lO , All, A 12 , A23 , Bl and B2 are rectangular, except for the matrix A 13 , 

that should be square. For the matrix A 13 to be square it is sufficient to take 
from the general system of equations the number of equations equal to the 
dimensionality of the vector z (first equation of system (10.66)). The sec­
ond vector equation of system (10.66) has the dimensionality equal to n - k. 
Multiplying the first equation of system (10.66) by the matrix Ail, we obtain 

A- 1B f A- 1A·· A- 1A· A-1A z = 13 1 1 - 13 lOYl - 13 llYl - 13 12Yl· (10.67) 
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The break-down of the general set of equations into two equations of the 
system is, in general, arbitrary, but it should be such that the determinant 
of the formed matrix Al3 does not vanish in any of the points of the motion 
interval, i.e. the matrix A13 should be non-singular. Having substituted the 
expression for z in the second equation of system (10.66), we obtain the 
following vector-matrix equation with eliminated algebraic unknowns 

(10.68) 

where 

A4 = E-A23 A i"l AlQ; A5 = A2l -A23A 1l All; A6 = A22 -A23A 13l A 12 • 

Let us lower the order of equation (10.68) having introduced a vector 

(10.69) 

and transform (10.68) to an equation of the form 

(10.70) 

where 

The dimensionality of the vectors fl and f2 entering equation (10.70) is 
2 (n - k) (the first (n - k) components of the vectors fl and f2 are non-zero 
and the remaining (n - k) components are equal to zero). The solution of 
equation (10.70) can be presented as 

t 

Y = K (t) Yo + / G (t, T) (B3f2 - B4 f l ) dT. 

o 

The matrix K (t) satisfies the equation 

k (t) + A (t) K (t) = o. 

(10.71) 

(10.72) 

In determining the vector z, we are concerned only with the first derivative 
of the vector y with respect to t : 

t . . a 
y = K (t) Yo + J at G (t, T) (B3 f2 - B4 f l ) dT 

o 
+ B3 (t) f2 (t) - B4 (t) fl (t) . (10.73) 

The partial derivative of the Green matrix with respect to t entering into 
the integral in expression (10.73) can be transformed to the form 
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a . 1 
at G (t, 7) = K (t) K- (7), 

or with due account of equation (10.72) 

a 
at G (t, 7) = -A (t) K (t, 7). 

Having substituted expression (10.75) in (10.73), we obtain 

t 

Y = -A(t)K (t) Yo - / A (t) G (t, 7)B3 (t) f2M 

o 
t 

+ / A (t) G Ct, 7)B4 (t) f1M + B3 (t) f2 (t) - B4 (t) f1 (t). 
o 

(10.74) 

(10.75) 

It is possible to present the expression for the vector z (10.67) as (since 
YI = h), 

(10.76) 

where As, A g, AlO are rectangular matrixes. The matrixes A g, A 10 have 
2 (n - k) columns and k rows. By the substitution of expressions for y, y 
(10.71), (10.75) in (10.76) and manipulations we obtain 

t t 

Z = ef1 - Df2 + Gyo + / K' (t, 7) f1M + / K" (t, 7) f2d7, 

o 0 

where e = AgB4 + As; D A gB 3; G 
K' = [AgA - AlOl GB3; K" = [AlO - AgA] GB4. 

In scalar form (10.77) is 

n-k n-k 

Zi = L [Cijftj - dij !2j + 9?jYOj] + L k:j ft jd7 
j=l j=l 
n-k 

+ L k~j!2jd7, (i = 1, 2, ... , k). 
j=l 

(10.77) 

(10.78) 

When finding the maximum value of each of the reactions the variation 
laws of ftj and !2j are determined by the method presented in Sect. 10.2. Let 
us find, for example, the variation laws of ftj and !2j, when zp reaches its 

n-k 

maximum value. The maximum value of the sum L Cpjftj is reached in the 
j=l 

following way: 
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If Cpj > 0, then IIj = M j (t); 

If Cpj < 0, then IIj = mj (t) . 

n-k 

Similarly we determine the maximum value of the sum L dpj !2j : 

j=1 

If dpj > 0, then !2 = M j (t); 

If dpj < 0, then !2 = mj (t) . 

The maximum values of the integrals entering in the right-hand side of 
relationship (10.78) are determined at a fixed time instant in the following 
manner. If k~j > 0 (or k;j > 0) on the interval (Tv, TV+!) , then IIj = M j (T) 
(or !2j = M j (T)), and if k~j < 0 on the interval(Tv , TV+!) , then IIj = mj (T). 

If the initial data are also given as 

YOj min :::; YOj :::; YOj mao" 

then the "worst" values of YOj, at which zp, reaches maximum are determined 
from the conditions: 

If g~j ~ 0, then Yoj = YOjmax; 

If g~j « 0, then Yoj = YOj min· 

Example 10.3. Let us determine the maximum value of the reaction 
N (t) (Fig. 10.19 b), if If (t)1 :::; a. With the use of d'Alembert's principle we 
obtain the equations of motion of the beam and the mass m : 

JoB + aL2iJ + CL2(J = -Nl; 

my+N -f =0. 
(10.79) 

Having eliminated the reaction N, from system (10.79), we obtain (as Y = lB) 

(Jo + ml2) B + aL2iJ + cL2(J = fl. (10.80) 

At zero initial data the solution of equation (10.80) takes the form 

t 

- 1 J -n(t-r) . -(J - (Jo + mP) e smp1 (t T) fM, (10.81 ) 

o 

where 

n = 2 (Jo + mP) ; 
2 cL2 

Po = Jo + mp· 

By manipulations we can obtain from the second equation of system 
(10.79) the following expression for the reaction N as 
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( ml2) ml2c 
N = 1 - Jo + ml2 f + (Jo + m[2) PI 

t 

X ! e-n(t-r) sin [PI (t - T) +,6] f dT, 

o 

2npl 
where c = v'p~ + 4n2pr; tg,6 = -2-· 

Po 

(10.82) 

The maximum value of expression (10.82) is basically determined by the 
integral, which reaches its extreme value, if the function f (t) changes its 
values from +a to -a at time instants Tn found from a condition 

The greatest possible value of the reaction N is reached at t -+ 00, there­
fore let us go into expression (10.82) to the independent variable c: = t - T, 

that varies from infinity to zero. In this case we determine the instants of 
discontinuity C:k of a function f (c:) from a condition 

(10.83) 

The maximum value of the reaction N is 

Joa [ . . ~ {-n(k7r -,B)}] N max = J, [2 + Cl sm (,6 + ,61) + 2 sm,61 ~ exp , 
0+ m k=1 PI 

where 

PI 
tg,61 = -. 

n 

As the sum in the right-hand side of (10.84) is 

~ {-n (k7r _ ,6)} exp { -n~-~)} 
~exp = {}' 
k-I PI 1 - exp .=.!!2!: 

- Pl 

we finally obtain 

(10.84) 

(10.85) 

[ 
{ _n(7r_m}] exp 

sin (,6 +,6I) + 2sin,6I I~}' (10.86) 
1-exp ~ 

Pl 

where 

. a Po 
Sln"'l = 2 

Jpo +n2 
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10.6 Areas of Possible Values of the System State 
Vector in the Case of Several Sections of Motion 

In the previous sections we examined problems involving cases where the 
number of a systems degrees of freedom on the given interval of motion time 
remained unchanged as did the number of random excitations. Dealing with 
real systems, however, we run into violations of these conditions when during 
the motion of a system its number of degrees of freedom or the number and 
even the type of random excitations can change. A system with one degree 
of freedom is shown in Fig. 10.20. A mass m moves on an absolutely rigid 
beam with a velocity v. A random force f bounded in absolute value acts on 
the mass m on an interval (0, ld and a random twisting moment bounded in 
absolute value LlM (the mass m begins to rotate) acts on this mass on an 
interval (lI, L). The area of possible values of () and iJ at the moment of the 
mass m losing contact with the beam will depend on two sections of motion, 
on each of which different random excitations occur. 

A system with varying number of degrees of freedom is shown in Fig. 10.21. 
Ring 1 can freely move on rigid guides 2 connected with disk 3. The instants ti 
of the ring's contact with the disk 4 are known. When there is a gap between 
ring 1 and disk 4, the given system has two degrees of freedom. In the case of 

Fig. 10.20. 

Fig. 10.21. 
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the ring being tightly forced against disk 4 (it is supposed that relative slip 
of ring 1 and disk 4 is excluded), the system has one degree of freedom. 

If it is required to determine the possible angular displacements of disk 3 
at a fixed time instant during the action of a random moment 11M bounded in 
absolute value, we must consider the motion of the system with due account 
of the changes in the number of degrees of freedom. 

Let us, first, consider a case where there are two sections of motion and 
the dimensionality of the state vector does not vary. On each of its sections of 
motion the system is described by its own vector-matrix equation expressed 
as 

h + A1Y1 = B1f11 ; Y1 (0) = YlO, (0::::; t ::::; tk); 

Y2 + A2Y2 = B2f12 ; Y2 (tk) = Y20, (t~ ::::; t ::::; tk) , 

(10.87) 

(10.88) 

where Y1 and Y2 are the n-dimensional vectors of the disturbed state of the 
system on the first and second sections of its motion respectively; f11 is the 
vector of random excitations that act on the system on the first section of 
its motion; f12 is the vector of random excitations that act on the system on 
the second section of its motion. The components of the vectors f11 and f12 
follow conditions of the form 

where mij and Mij are some known functions. 
The solutions of equations (10.87) and (10.88) are 

tk 

Yl (tk) = K1 (tk) YlO + / G1 (t~, r) B1f11dr; (10.89) 

o 

tk-t~ 

Y2 (tk - tk) = K2 (tk - tk) Y20 + / G2 [(tk - t~), r] B2f12dr. (10.90) 
o 

Since Y1 (t~) = Y20, then, substituting the expression for Y1 (tk) in (10.90) 
we obtain 

tk 

Y2 (tk - tk) = K2 (tk - tk) K1 (t~) YlO + / K2 (tk - t~) 
o 

x G, Wk' r) B,fndr + 7'~G' [(tk - t~), r] B,f"dr. 
o 

(10.91) 
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In the case of k sections the expression for Yk will include k integral terms 
with nonintersecting limits of integration. 

The maximum value of the projection of the vector Y2 onto an arbitrary 
direction is determined in the same manner as for one section of motion. 

Example 10.4. There are the following equations of a systems motion 
on a time interval 0 :::; t :::; tl 

(10.92) 

The equations of motion on a time interval tl :::; t :::; t2 are 

(10.93) 

Random excitations tI and 12 satisfy the condition 

The area of possible values of xiI and X2I at the end of the first section of 
motion is the area of initial data for system (10.93). The solution of system 
(10.93) is 

t2-t, 

XI2 = J 12dT + XiI; 
o 

t2- t , 

X22=- J (t2- tl- T)!zdT+xil(t2- td+x;I' 
o 

where xiI, xh are the values of Xn and X2l at t = tl' 

(10.94) 

In order to plot the area it is more convenient to present solutions (10.94) 
in the form 

t, t2 -t, 
(10.95) 

X22 = J (t1 - T) tIdT - J [(t2 - td - T] 12dT. 
o 0 

Let us determine the maximum value of the projection of the vector 
x (XI2,X22) onto the direction determined by the unit vector e: 

t, 

(x· e) = J [cos a + (2tl - h - T) sin a] tIdT 
o 

+ tih[cosa-(t2-tl-T)Sina]12dT. 

o 
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The maximum value of the projection (x· e) is equal to the sum of the 
maximum values of the terms which can be determined separately (for each 
x we determine the instant Ti of discontinuity of the functions It and h). 
As the integrands in (10.95) linearly depend on T on the intervals (0, td and 
(tl, t2), they can reverse sign only once, i.e. the extreme values of each of the 
integrals are reached at the variation laws of It and 12 with one discontinuity. 
The area from 12 at t = t2 shown by the dashed line corresponds to each point 
of the boundary of the area at t = tl (Fig. 10.22). Envelope 1 bounds the full 
area at the moment t2 on the plane X22X12. When the dimensionality of the 
system state vector Yl varies on different sections of motion, as, for example, 
in the system shown in Fig. 10.21, we have systems of equations of different 
dimensionality on different sections of motion. For the purpose of greater 
definiteness let the dimensionality of the vector Yl be equal to n, and the 
dimensionality of the vector Y2 be equal to v (v < n), i.e. 

[
Yll] [Y21] 

Yl = Y~2 ; Y2 = Y~2 . 

Ylv Y2v 

The components Y21, ... , Y2v are the continuation of the components 
Yll, ... , Ylv on the second section of motion, i.e. the components of the vectors 
Yl and Y2 (Yll' Y12) ... (Ylv,Y2v) are physically identical. The vector Yl (t~) 

Fig. 10.22. 
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can be presented as 

t~ 

Yl (t~) = [Y,20] = Kl (t~) [Y;,IO] + !K1B1f u dr, 
Y 20 Y 10 

(10.96) 

o 

where Y' 20 contains the components of the vector Yl that have no continu­
ation on the second section of motion. It is possible to derive the following 
expression for Y20 from equation (10.96) 

tk 

Y20 = K~ (tU y'10 + K~' (t~) Y" 10 + ! Pfudr, 
o 

where 

k21 k22 ... k2v 
K~(tU = . '. . ; [

kU k12 ... klV] 

. . . . . . '. 

kVl kV2 ... kvv 

[
PU P12 ... PIn] 

P = ~~~ ~~~ : : : ~~~ . 
Pvl Pv2 ... Pvn 

[

k1'V+1 ...... kIn] 
k2 v+l ...... k2n 

K"(t') - . . 1 k - • '. • , . .. . . . '. 

kv,v+l ...... kvn 

(10.97) 

The matrix K~ is a square matrix (of the v-th order); the matrixes K~' 
and P are rectangular. The matrix P represents a matrix obtained from the 
matrix KIBI by way of retaining the first v rows. Having substituted the 
expression for Y20 into (10.90), we obtain 

Y2 (tk - t~) = K2 (tk - t~) K~ (t~) Y'1O + K2 (tk - t~) K~' (t~) Y" 10 

~ ~-~ 

+ ! K2 (tk - t~) Pfu dr + ! K2 [(tk - tU , r]B2f I2dr. (10.98) 

o 0 

The area of possible values of the disturbed system state vector Y2 (tk - t~) 
at the end of the second section is determined in the same way as for one 
section of motion. 

10.7 Areas of Possible Values of the System State 
Vector at the Action of Dependent Random Excitations 

Not infrequently we come across random excitations that cannot be consid­
ered independent. They include, among others, a scatter of coordinates and 
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their first two derivatives at some time instant and projections of a random 
force onto coordinate axes. An example of a mechanical system subjected to 
the action of dependent random excitations bounded in absolute value is pre­
sented in Sect. 10.1 (see Fig. 10.10). The dependence between the excitations 
has the same effect as the additional restrictions imposed on these functions. 
One of such restrictions is condition (10.23) 

(Cf. f) ::; 1, (10.99) 

where C is a square self-adjoint positively definite matrix. 
In the general case, the elements C;j of the matrix C can depend on time. 

As is known, for a matrix to be positively definite it is necessary and sufficient 
that its elements satisfy the Sylvester criterion (for any time instant t) 

ICU Cl21 Ll2 = > 0, ... ,Lln > O. 
C21 C22 

The vector of random initial data Yo can satisfy the similar condition 

(CoYo . Yo) ::; 1, (10.100) 

where Co is the square self-adjoint positively definite matrix with constant 
elements. 

The solution of equation (10.24) is 
tk 

y=K(t)yo+! G(tk,r)B(r)fdr. 

° 
(10.101) 

Let us consider a case where the vector of random excitations can be 
presented as 

(10.102) 

where H (t) is the diagonal matrix with continuously time-dependent ele­
ments and fO is the vector whose components are random numbers limited 
in absolute value. 

Having substituted expression (10.102) in equation (10.101), we obtain 
tk 

y = Kyo + ! P (tk, r) fOdr, (10.103) 

° 
where P (tk' r) = G (tk' r) . B (r) H (r). 

Condition (10.99) is modified into the following form 

(c fO. fa) < 1 1 _ , (10.104) 

where C1 = HCH. 
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In order to obtain the area of deviations of the vector y let us determine 
the maximum projection of the vector y onto the unit vector a: 

tk 

Ypre = (y ·a) = (K(t) Yo ·a) + / P(tk,r)fOdr·a. 
o 

(10.105) 

Let us determine the maximum of expression (10.105) at additional con­
ditions (10.99) and (10.100) which must be satisfied by the vectors Yo and 
fO. Having used Lagrangian multipliers, we obtain the following functional: 

or 

tk 

J = (K (t) Yo· a) + / P (tk, r) fOdr· a 

o 

- ~ [(Coyo . Yo) - 1]- ~ [(CofO. fO) - 1] , 

tk 

J = (Yo· K* (t)a) + fO / P* (tk,r)dr· a 

o 

- ~ [(Coyo· Yo) - 1]- ~ [(CofO. fO) -1] . (10.106) 

The functional J depends on YOi and iP, therefore YOi and iP at which J 
reaches its extreme values are determined from the conditions 

8J 
8iP=0, (i=1,2, ... ,n). (10.107) 

Conditions (10.107) can be obtained in a more compact form, by differ­
entiating (10.106) with respect to the vectors Yo and fO: 

8J K* C -8 = a - j), oYo = 0; 
Yo 

tk 

::0 = / P*dr· a - ACIfo = o. 
o 

(10.108) 

The vectors Yo and fO that give extreme values to expression (10.106) are 
determined from the following equations 

tk 

/ P* (tk,r)dra = ACIfo. 
o 

(10.109) 

(10.110) 
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Multiplying relationships (10.109) and (10.110) by matrixes Gal and GIl 
respectively, we obtain 

(10.111) 

tk GIll P*(tk,r)dra=).fo. (10.112) 

° 
Let us scalarly multiply expression (10.109) by expression (10.111) 

or 

(10.113) 

We shall deal with expressions (10.110) and (10.112) in a similar way: 

or 

(10.114) 

Expressions (10.113) and (10.114) define the introduced Lagrangian mul­
tipliers ,." and ). for each direction in space. 

Let us determine the maximum value of each of the terms defining the 
vector y. Then, we present the vector y as a sum of two vectors: 

Y = Yl +Y2, (10.115) 

where 

tk tk 

Y2 = I P(tk,r)fOdr = I Pdrfo. 

° ° 

Let us prove the following theorem: the maximum value of the projections 
of the vectors Yl and Y2 onto the arbitrary direction determined by the unit 
vector a is equal to the value of the Lagrangian multiplier for this direction. 
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Let us multiply both parts of equality (10.111) from the left by the matrix 
K (tk): 

(10.116) 

Let us determine the maximum value of the projection of the vector Yl 
onto the direction a from the following relationship 

Ylpra = (Yl . a) = (K (tk) Yo' a) = (YoK* (tk) . a), 

or, having used relationship (10.109), 

Ylpra = (Yo' J.LCoYo) = J.L (Yo' CoYo) = J.L. (10.117) 

Similarly we may show that 

Ylpra =.>... (10.118) 

The formulated theorem is proved. The maximum value of the functional 
J or of the projection of the vector onto the direction a is 

Jrnax = Ypramax = J.L +.>.., (10.119) 

where J.L and'>" are determined from relationships (10.113) and (10.114). 
Let us determine the vectors Yo and fO that give maximum values to Yl 

and Y2 for the given direction a. From relationships (10.109) and (10.110) 
we obtain 

tk 

f O = ~Cl1! P*(tk,r)dra. 
o 

(10.120) 

(10.121) 

The vectors Yl and Y2 for the given direction a are determined from the 
following relationships 

(10.122) 

tk tk 

Y2 = ~! P(tk,r)drCiJl! P* (tk,r)dra, (10.123) 

o 0 

or 

KC-1K*a 
Yl = 0 , 

V(KCiJl K*a . a) 
(10.124) 
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A 
a 

(10.125) 

Formulas (10.124) and (10.125) enable us to determine for each unit vec­
tor a a vector y, that connects the point of origin with some point of the 
boundary of the area of possible values of the vector y. Formulas (10.120)­
(10.123) are true provided that J-L =j:. 0 and A =j:. o. If the Lagrangian multipliers 
for some directions of the vector a vanish, formulas (10.120)-(10.123) are not 
applicable. 

It follows from relationships (10.116) and (10.117) that in this case the 
projections of the vectors YI and Y2 onto some direction are equal to zero (it 
is not always the case that both projections of the vectors YI and Y2 vanish 
simultaneously). The vanishing of one of the projections of the vectors (for 
example, that of yd means that the area of deviations of the vector YI 
degenerates, i.e. has a smaller dimensionality. The Lagrangian multipliers 
can vanish only when 

tk J P* (tk' T) dT = O. 

o 

(10.126) 

(10.127) 

The dimensionality of the subspace of the vector a for which the La­
grangian multipliers vanish is equal to the following rank of matrixes 

tk 

K* (tk); J P*(tk' T) dT. 

o 

If the rank of the matrixes is equal to n, the Lagrangian multipliers do not 
vanish. The state-of-the-system vector at a fixed time instant (the greatest 
possible value of the vector y) is 

(10.128) 

where 

tk tk 

KI = KCOIK*; PI = J PdTC11 J P*dT. 

o 0 
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Relationship (10.128) allows us to establish the dependence of the com­
plete area on the scatter of initial data (vector Yh) and on random excitations 
that act during the system motion (vector Y2*). 

Let us find the equations of the areas of possible values of each of the 
vectors Yl and Y2 of the general solution y. Let us consider the expression 
for Yl (10.122): 

(10.129) 

Let us show, that the matrix Kl is self-adjoint, i.e. satisfies the condition 
(KI )* = (KI): 

(KI)* =.!:. (KCoIK*r =.!:. (K*)* (Colr (K*) 
J.L J.L 

= .!:.K (COl )* K* = .!:.K (C~)-I K* = .!:.KCOI K* = K 1 . 
J.L J.L J.L 

In the process of derivation we used the condition of the self-adjointness 
of the matrix Co. 

From relationship (10.129) we have 

K - l 
1 YI = Of. (10.130) 

Scalarly multiplying the left- and right-hand sides of equation (10.130) by 
KllYI and Of respectively, we obtain 

or 

(10.131) 

Equations (10.131) represent an equation of a second order surface in an 
n-dimensional space. It follows from the boundedness of the area of devia­
tions that this surface is an ellipsoid. Similarly we can show that the vector 
Y2 satisfies the following equation 

(10.132) 

where PI is the self-adjoint matrix. 
Relationships (10.124), (10.125) define the greatest possible value of the 

vector Y (10.115) as a function of the direction of the arbitrary unit vector 
Of. When the direction of the vector Of continuously changes in space, the 
end of the vector Y * describes the limit surface (the boundary of the area of 
possible values of the state vector). It is possible to present the vector Of in 
terms of projections in the initial coordinate system: 
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n 

Q = Lhiei, 
i=1 

(10.133) 

where hi are the projections of the vector Q onto the coordinate axes and ei 
are unit vectors of the coordinate axes. 

The component of the vector Y * is 

n 

Y*i=Laijhj , (i=1,2, ... ,n). 
j=1 

(10.134) 

Let us consider a special case where it is required to determine the pro­
jection of the area onto a two-dimensional plane. Here 

From relationships (10.134) we obtain 

Y*1 = aU h1 + a12 h2, 

Y*2 = a21h1 + a22 h2· 
(10.135) 

Changing Q from 0 to 3600 , we obtain from relationships (10.135) the 
coordinates of the boundary points of the projection of the area onto a two­
dimensional plane. 

Example 10.5. Let us consider the free vibrations of a mass m (Fig. 10.23). 
Without considering damping forces the equation of the small vibrations of 
the mass is 

ii + P6Y = 0, (10.136) 

c 3EJx 
where p20 = _. C = --. 

m' P 

y 

m 

c 

Fig. 10.23. 
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The initial data are random dependent quantities that satisfy the condi­
tion 

(~)2 + (~)2 ~ 1, 
YOm YOm 

(10.137) 

where YOm, YOm are the greatest possible values of the scatter of the initial 
data. 

In the considered case condition (10.137) has a simple physical meaning. 
At the initial time instant the system can have a random deviation Yo and a 
random velocity Yo, i.e. the system obtains a random energy equal to 

(10.138) 

The greatest possible energy that can be obtained by the system is lim­
ited and equal to Wm , it can be expressed in terms of the greatest possible 
deviation and the greatest possible velocity: 

2 ·2 
Wm = CYOm = m yom . 

2 2 
(10.139) 

At arbitrary deviations 

(10.140) 

or, having divided the inequality by Wm , we obtain 

(~)2 + (~)2 ~ l. 
YOm YOm 

(10.141) 

Let us pass to non-dimensional quantities, putting 

tpo = Tj Y = ZYom· 

By transformations we obtain (having passed to non-dimensional coordi­
nate and non- dimensional time) 

z + Z = OJ 

2 Zo ( . )2 
Zo + -.- ~ 1, 

ZOm 

h YOm 
were ZOm = . 

(YomPO) 

(10.142) 

(10.143) 

Condition (10.143) can be presented as the following scalar product 

(COZO . zo) ~ 1, (10.144) 
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where 

[_1 0] 
Co = Z~m 1 ; Zo = [!~] . 

The solution of equation (10.142) can be presented as 

[i] [cos T - sin T] [iO] 
Z = = . = K (T) Zo. 

Z sinT COST Zo 
(10.145) 

At the time instant t = tk or Tk = tkPO (for the purpose of simplification 
let us assume that Tk = 1) 

z=K(I)zo. (10.146) 

Lagrangian multiplier (10.113) for the arbitrary direction of the unit vec­
tor Q (see Fig. 10.18) is 

where 

K = [C~SI -sin 1] ; 
sml cos 1 

C= ; [i5m 0] 
o 1 

By transformations we obtain 

j.£ = J kll cos2 a + k12 sin 2a + k22 sin 2 a 

or 

j.£ = J i5m cos2 (a - 1) + sin2 (a - 1), 

where a is the angle expressed in radians; 

kll = i~m cos2 1 + sin2 1; 

k12 = ~ sin 2 (-1 + i~m) ; 
k22 = i~m sin 2 1 + cos2 1. 

(10.147) 

[ 
cos 1 sin 1] 

K* = . 
-sinl cosl 

(10.148) 

Let us find a vector zo, at which the projection of the vector z on the 
direction determined by the vector Q, reaches its maximum value, from the 
expression 
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or 

(10.149) 

The components of the vector Zo are 

. z5mcos(a-I) 
ZOI = Zo = j 

J.L 
1 . 

Z02 = Zo = - sm (a - 1) . 
J.L 

(10.150) 

The obtained expressions for zo, Zo and J.L should satisfy condition 
(10.144) (the test of the solution). It is easy to verify that this is true. The 
system state vector z at a time instant T = 1 (10.124) is 

or 

IKC-lK~ z = - 0 01, 
J.L 

The components of the system state vector are: 

Z (1) = t [( z5m cos2 1 + sin 1) cos a + ~ sin 2 (z5m - 1)] j 
(10.151) 

Z (1) = t [~cosasin2 (z5m -1) + (z5msin21 + cos2 1) sin a] . 
Changing the angle a from 0 to 271", we obtain from (10.151) the coordi-

nates of the boundary of the area of possible values of the system state vector 
at a fixed time instant. 

Let us consider the special case of z~m = J.L = 1 

Z (1) = cosaj Z (1) = sina. (10.152) 

Eliminating a from (10.151), we obtain the equation of the boundary of 
the area of possible values of solutions Z2 + Z2 = 1 which is true for any 
time T. 

In the given example the free vibrations of the conservative system, for 
which the total energy remains unaltered are considered, therefore the area 
of possible values of solutions also remains unaltered in time. 

Let us consider the case of a force random in its direction and bounded 
in its absolute vallie f (If I ~ fm) acting on a mass m (Fig. 10.10). 
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The equations of motion of the mass m are 

.. 2 1 f 
Y+PIY=m yj 

where 

.• 2 1 f 
x+P2Y = - "" m 

(10.153) 

Going on to non-dimensional parameters tPI = 7, Y = Yol, x = xol, by 
way of transformations we obtain 

Yo (7) + Yo (7) = f Y2I = fyoj 
mPI 

.• () 2 () f~ f 
Xo 7 + POXo 7 = ~I = xO· 

mPI 

(10.154) 

The non-dimensional components of the vector f satisfy the condition 

( f~o ) 2 + ( f~o ) 2 < l' 
f:no f:no -, 

or 

where matrix C I is 

1 
f;" 0 0 0 

o 1 

o 0 

o 0 

o 0 
1 

f;" 0 
o 1 

( f:n ) 
fmo = mp~1 

It is required to determine the area of possible values of the non­
dimensional coordinates Xo, Yo of the mass m at a fixed time instant tk 
(7k = Pltk) at zero initial data. 

From system (10.154) we obtain the following set offour equations of the 
first order (omitting index 0 in non-dimensional quantities) 

YI + Y2 = II j YI - Y2 = OJ 

Y3 + P~Y4 = hj Y4 - Y3 = 0, 

where 

Yl = Yj Y2 = Yj II = Iyj 

Y3 = Xj Y4 = Xj h = Ix. 

(10.155) 

(10.156) 
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In vector form we have 

y+Ay=f, (10.157) 

where 

[
010 0] -10 0 0 

A= OOOp~; 
o 0 -1 0 

As follows from formula (10.125), we must know the matrix P(Tk,T) in 
order to determine the state-of-the-system vector y. In the considered case 
the matrix P is the Green matrix of equation (10.157): 

As the matrix G (Tk' T) is determined from the solution of homogeneous 
equations (10.155) and (10.156) that are independent, we can obtain it, hav­
ing determined Green matrixes for each of the systems of equations (10.155) 
and (10.156). The Green matrixes for these equations are 

[
COS (Tk - T) sin (Tk - T)] 

G 1 (Tk' T) = 
- sin (Tk - T) cos (Tk - T) , 

[ 
cospo (Tk - T) sinpo (Tk - T)] , 

G2 (Tk,T) = 
- sin Po (Tk - T) cos Po (Tk - T) 

therefore, we have 

Integrating the matrix G (Tk' T), we obtain 

where 

G~ = [
sin Tk 1 - cos Tk] 

- (1 - cos Tk) sin Tk ' 
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By transformations we obtain the matrix that enters in the numerator 
of expression (10.125) 

where 

BII = [ I~ sin2 Tk + (COSTk - 1)2 (!~ - 1) sin Tk (COSTk - 1)]. 

2 2 ' (!~ - 1) sin TdcoSTk - 1) I~ (1 - COSTk) + sin Tk 

_ [/~ sin2 POTk + (COSPOTk - 1)2 (!~ - 1) sinpoTk (COSPOTk - 1)] 
B~- . 

(!~ - 1) sinpo'Tk (COSPOTk - 1) I~ (1 - COSPOTk)2 + sin2 POTk 

Under the conditions of the problem it is required to find the area of 
possible values in the plane xOy, Le. the projection of a four-dimensional 
area onto the plane xOy, therefore vector a entering in formula (10.125) lies 
in this plane, i.e. 

[ 01 sin a . 
a = 0 = Oel + smae2 + Oea + cosae4; 

cos a 

A = (!~ - 1) sin Tk (cos Tk - 1) sin a el 

+ [I! (1- cos Tk)2 + sin2Tk] sinae2 

+ 12 (!! -1) sinpoTk (COSPOTk -1)cosaea 
Po 

+ :~ [I! (1- COSPOTk)2 + sin2 POTk] cosae4, 

where ei are the unit vectors of the coordinate axes. 
The denominator of formula (10.125) for the considered example is 

.--------------------------=} 
a = [I'; (1 - cos Tk)2 + sin2 Tk] sin2 a+ 

=}~-----------------------------

+ ~ [I'; (1 - COSPOTk)2 + sin2 PO'Tk] cos2 a. 

For plotting the projection of the area onto the plane xOy we need the 
following projections 
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Y2 = ~ [f! (1 - cos Tk)2 + sin2 Tk] sin a; 

Y4 = -i- [f! (1 - cos POTk)2 + sin2 POTk] cos a. 
poa 

Changing a from 0 to 3600 , we obtain the area of possible values of the 
coordinates of the point at the time instant Tk . 

Let us consider the special case of Po = 1. By manipulations we obtain 

Y2 = J f~ (1 - cos Tk)2 + sin2 Tk . sin a, 

Y4 = J f~ (1 - cos Tk)2 + sin2 Tk . cos a. 

Eliminating the angle a, we obtain the following equation of a circle 

(~f + (~f = 1. 

Example 10.6. Let us consider the mechanical system shown in Fig. 10.24. 
A body of a mass m1 moves under the action of a force R in an absolutely 
rigid tube elastically fixed on the right end. The direction of the force R is 
characterized by two random quantities e and e, where e is the linear dis­
placement and e is the angular displacement. The random displacements are 
bounded in the absolute value 

We may consider that both random quantities are small. The projections 
of the force R onto the planes yOz and xOz and its position relative to the 
points 0 and 01 that depends on the projections of the random displacements 
ex, ey , ey and ex are shown in Fig. 10.25. For the purpose of simplification we 
take that at the initial time instant the coordinate of the point 01 is equal to 
h/2. Due to the random misalignments of the force R two random moments 
acting in the planes yOz and xOz take place: 

y 

z 

Fig. 10.24. 

~ , I ' , I 

m,g 
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Fig. 10.25. 

Mx = (zt: y - ey) R; 

My = (zt:x - ex) R. 

z 

(10.158) 

(10.159) 

The moments Mx and My will cause a disturbed motion of the tube in 
two planes. This motion is characterized by small angular deviations 0 and 'lj; 
(Fig. 10.24) . Let us obtain the equations of the tubes disturbed motion about 
the equilibrium state in which the system is up to the moment of application 
of the force R . 

At the moment of the body leaving the tube the axis of the body will 
obtain angular deviations Ok, 'lj;k and also angular velocities th and 'if;k that 
form a four-dimensional area in the phase space. As the projections are ex = 
lei cos a and ey = lei sin a, we obtain a condition satisfied by the random 
quantities ex and ey : 

~ + ~ <l. ( )2 ( )2 
emax emax -

(10.160) 

The random quantities t:x and t:y meet a similar condition 

~ + ~ <l. ( )2 ( )2 
t:max t:max -

(10.161) 

When analyzing the disturbed motion of the system under the action of 
the random quantities ex, ey, t:x, t:y that meet conditions (10.160), (10.161), 
it is required to determine the areas of possible values of the system state 
vector at the instant of the body's exit. Assuming that the angles are small, 
we obtain the following equations of motion: 

! [JxO] + aZ20 + c1Z20 = Mx - m19z; (10.162) 

! [Jy'if;] + aZ2'if; + cIZ2'if; = My, (Jx = Jy) . (10.163) 
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Since 

( h)2 
J = Jx = Jy = Jo + JOI + ml z + "2 ' 

where Jo is the moment of the tube with respect to the point 0; J01 is the 
moment of the body with respect to the axis perpendicular to the axis z and 
going through the center of gravity of the body. By manipulations we obtain 

(j + auO + a12() = bo + buey + b12ey ; 

1/J + a21tP + a22'ljJ = b21 ex + b22e"" 

where 

2m1 (z + It) i + al2 cl l2 

au = J ; a12 = J; 
c2l2 m1gz 

a21 = au; a22 = J; bo = -J-; 

Rz R 
bu = b21 = J; b12 = b22 = - J. 

(10.164) 

(10.165) 

Considering that the small vibrations of the system and the small devi­
ations of the line of action of the force from the axis z practically do not 
influence the motion of the body along the axis z, we obtain at zero initial 
data 

Z= ~t2. 
2ml 

(10.166) 

Equations (10.164) and (10.165) are connected through the right-hand 
sides that embrace the random quantities satisfying conditions (10.160) and 
(10.161). If we introduce the vector 

y= m = [El' 
equations (10.164) and (10.165) can be written as 

y + A (t) y = Bl (t) fl + Bl (t) f2 + bo (t), 

where 

A(t) = [

au 0 a12 0 1 o a21 0 a22 

-1 0 0 0 ' 
o -1 0 0 

[
b11 0 bl2 0 1 

B (t) = 0 b12 0 b12 . 
1 0 0 0 0 ' 

o 0 0 0 

(10.167) 

(10.168) 
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We can obtain the solution of equation (10.168) only by using numerical 
methods because the elements of matrix A( t) are varying in time. The general 
form of the solution at zero initial data is 

tIc 

Y = I G (tk' t) [Bl (fl + f2) + h o] dt. 
o 

(10.169) 

The matrix G (tk' t) can be determined from the solution of the homoge­
neous equation adjoint with the following homogeneous equation 

dz A* dr + z = 0, (r = tk - t). (10.170) 

The fundamental matrix of solution (10.170) K (r) is connected with the 
matrix K (tk' t) by the relationship 

K*(r)=G(tk,t). (10.171) 

Let us confine ourselves to the determination of the projection of the four­

dimensional area onto the phase planes (Ok, tPk) and «(h,.,pk) . 
Let us take the arbitrary vector 0* = 0 .. (cos{3, sin{3, 0, 0), lying in the 

plane (0, tP) ,and determine the projection of the state-of-the-system vector 

y onto the direction defined by the vector 0*: 

tk 

Yo. = (y. 0*) = J K (tk' t) [Bl (fl + f2) + hol 0 .. dt. 
o 

(10.172) 

To plot the area it is required to determine the maximum of the projection 
Yo. at additional conditions (10.160) and (10.161) imposed on the vectors fl 
and f2' i.e. we must find the maximum of a functional of the form 

Al A2 
J = Yo. - "2 [(Glfl . fd - 1]- "2 [(G2f2 · f2) -1], (10.173) 

where Al and A2 are Lagrangian multipliers; 

1 10 0 0 
-2- 0 00 

01 0 0 c max 

G1 = 0 _1_00 G2 = 00_1_ 0 
c~ax c~ax 

0 0 10 
00 0 

1 
0 0 01 -2-

Cmax 
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According to the theory presented in Sect. 4.3, the maximum value of the 
functional J is equal to the following sum of Lagrangian multipliers: 

that are determined from the relationships 

(GllDa* . Da*) = A~; 

(GilDa* . Da*) = A~, 

where 

tk 

D = ! (KBt} * dr. 
o 

(10.174) 

(10.175) 

It follows from expressions (10.175) that in order to obtain the values Ai 
for any direction of the vector a* it is sufficient to determine the numerical 
values of the matrix D once. The vectors fl and f2 that give a maximum 
value to the projections of the vector y onto the direction of the vector a* 
are: 

(10.176) 

Having substituted the values f lm and f2m into solution (10.169), we ob­
tain 

tk 

Ym = D*flm + D*f2m + ! Kbodr. 
o 

(10.177) 

To plot the projection of the area onto the plane (ilk, ~k) it is sufficient 

to determine two projections of the vector Ym (Ylm and Y2m) : 

(10.178) 

where Cym, cxm, eym , exm are the components of the vectors flm and f2m 
(10.176). 

A point of the boundary of the projection of the area corresponds to 

each pair of the numbers Ylm and Y2m on the plane (ilk'~k). Expressions 

for projections Ylm and Y2m (10.178) embrace the non-random components 
Ylk and Y2k that can be ignored when plotting the area, because they do 
not influence its form. The numerical values of parameters that enter into 
equations of motion (10.164), (10.165) and conditions (10.160), (10.161) are 
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Fig. 10.26. 

l = 6 m; h = 1 m; mIg = 600 N; Jo = 4 . 103 kg·m2 ; J 01 = 50 kg·m2 ; 

C2 = 4.106 N/m; 0!1 = 0; emax = 5.10-3 m; cmax = 10-3 rad; R = 106 N; 
tk = 0.49s. 

Changing {3 (Fig. 10.26) from 0 to 3600 and determining Ylm and Y2m 

for each value of {3 (practically for a number of discrete values of (3), we 
obtain the projection of the area of possible values (Fig. 10.26) of the angular 
velocities of the axis of the body at the instant of its exit from the tube. 

An area for a number of rigidity values Cl is given in Fig. 10.26. It substan­
tially depends on the parameters of the system, in this case - on its rigidity 
(at a fixed value of C2). There is such value of CI, at which the area becomes 
minimal. This value may be considered optimal (as, when solving technical 
problems, it is desirable to have the minimal area of possible values of the 
vector of the systems disturbed motion). 

10.8 Determination of the Maximum Values of Linear 
Functionals at Independent Excitations 

In analyzing the motion of a dynamic system it is often required to determine 
the extreme values of some function J that characterizes the quality of a 
process and depends on the vector y of the disturbed state of a system at a 
fixed time instant tk, for example 

(10.179) 
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where the vector Y satisfies an equation of the form 

y+Ay = Bf, (10.180) 

and the components Ii of the vector f satisfy restrictions (10.18) or (10.23). 
In applied problems the function L (Yk) represents a certain estimation 

characteristic (process quality criterion) that describes the deviation of a 
process from the given state. In these cases the disturbed-state vector Yk is 
considered a small one and the function L (Yk) can be expanded into a series 

(10.181) 

where (Lk' Yk) is the linear part of the expansion presented as a scalar 
product; (LoYk' Yk) is the square-law part of the expansion; Lk is the 

vector with components (:L) ; Lo is the matrix with elements 
uYkt Yki=O 

{P: I - =0; and L1L' is the remaining sum of a series. 
aYki Ykj Yk;.-O 

Ykj=O 
For example, Sect. 10.3 dealt with the motion of a rocket subjected to 

the action of a random exciting moment Mb limited in absolute value (see 
Fig. 10.13). Such a moment can take place at the action of random wind gusts 
or at random misalignments of thrust. Although it is usually very difficult to 
obtain information on the random action of a wind, which is indispensable 
when applying methods of the theory of random processes, at the same time 
we cannot ignore the effect of the winds possible action. Therefore there is 
a necessity for estimating its greatest possible effect with a limited volume 
of information on this score, including data on the greatest possible wind 
velocities in a given geographical place, which allows us to determine the 
area of possible values of the exciting moment Mn (Fig. 10.14). 

Example 10.2 involves the obtainment of the area of possible values of the 
angle <P and tP at the time instant tk. These values can be considered as the 
angular deflection of the axial line of a rocket (and its first derivative) from 
its nominal value, i.e. <Pk and tPk can be considered small quantities. If by the 
time instant tk we shall basically mean the instant of termination of the action 
of the force R, the subsequent motion of the body will follow a trajectory 
differing from the estimated one. The estimated trajectory that corresponds 
to the distance xo on the axis x, terminates in point A (Fig. 10.27). The 
possible trajectories at all other conditions being equal depend on <Pk and 
tPk. Let L1x denote the deviations of the body's fall points from point A. 
Then L1x becomes a function of <Pk and tPk. Owing to the boundedness of 
the area of possible values of (<pk, tPk) and of the time of motion on the 
passive segment of the trajectory the distance dispersion Lh(<pk' tPk) is also 
a bounded function. Let us take that L1xmax « x. Expanding the function 
x (<pk, tPk) into a Taylor series and confining ourselves to the linear part of 
the expansion, we obtain 
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y 

x J M X 

Xo 

Fig. 10.27. 

(10.182) 

or 

(10.183) 

[
OX 1 O<Pk 

where Lk = 0: ; 
aCPk 

<11k = [~:] are the components of the vector Lk that 

are considered known. 
It follows from (10.183) that Llx is a linear functional dependent on the 

vector <11k. It is required to determine the extreme value of Llx at the known 
area of the possible values of the random exciting moment Mb and the possible 
effect (the worst one) of the random wind action. 

In the general case, this problem is stated in the following way: at the 
fixed time instant tk it is required to determine the extreme value of a linear 
functional of the form 

(10.184) 

provided that the vector y satisfies the following vector-matrix equation 

y + Ay = Bf, (y (0) = Yo) , (10.185) 

and the components of the vector f satisfy conditions (10.18) and (10.23). 
The vector Lk is specified with its components being linearly independent, 

n 

i.e. the relationship L LkiQi can be satisfied only if Q1 = Q2 = ... = Q n = O. 
i=1 
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Let us consider the case of excitations fJ being independent, i.e. satisfying 
conditions (10.18). Then, we multiply scalar equation (10.185) by some vector 
L: 

(L . y) + (L . Ay) = (L . Bf) . (10.186) 

Let us transform the first term in the left-hand side of equation (10.186) 
to the form 

(L . y) = (L . y y - (i . y) . 
Equation (10.186) with the use of (10.187) takes the form 

(L . y) - (i . y) + (L . Ay) = (L . Bf) . 

(10.187) 

(10.188) 

Let us integrate both parts of equation (10.188) with respect to t: 

~ ~ 

(L· y)lt=tk - (L· y)lt=o + J [(L. Ay) - (i. Y)] dT= J (L· Bf) dT. 
o 0 

(10.189) 

The expression under the integral sign can be transformed to the form 

(L . Ay) - (i . y) = (A *L . y) - (t . y) = (A * L - t) . y. (10.190) 

Let us demand that the vector L at the time instant tk be equal to the 
vector Lk. From relationship (10.189) we finally obtain 

tk tk 

J = (Lk . Yk) = J (L - A*L . y) dT + J (L· Bf) dT + (Lo . yo). (10.191) 

o 0 

Let us require that the introduced vector L satisfy the equation 

i - A*L = o. 

Finally, we obtain the expression for the functional 

tk 

J = J (L . Bf) dT + (Lo . Yo) . 

o 

(10.192) 

(10.193) 

For solving equation (10.192) it is better to pass to a variable T1 = tk - T 

(at T1 = 0 K(O) = E): 

dL +A*L=O. 
dT1 

(10.194) 



www.manaraa.com

10.8 Determination of the Maximum Values of Linear Functionals 407 

The solution of equation (10.194) is 

L = K(rdLk. 

(at r1 = 0 K(O) = E). 

or 

By manipulations we obtain 

tk 

J1 = J (K (r1) Lk . Bf) dr1 + (Lo . yo), 

o 

tk 

J1 = J (B* K (r1) Lk . f) drl + (Lo . yo). 
o 

We obtain the vector Lo from (10.195) at Tl = tk, i.e. 

If the vector of initial values Yo is zero, we have 

tk 

J1 = J (B* K (rl) Lk . f) dr1· 

o 

(10.195) 

(10.196) 

(10.197) 

(10.198) 

At random functions with time-constant boundaries (IiI = ±a) we have 

tk 

J1 = J I(B* K (Tl))1 dTl Lk . a. 

o 

(10.199) 

From relationship (10.198) it is easy to find the variation law of the com­
ponents of the vector f that give a maximum value to the functional J. In 
scalar form expression (10.196) is 

(10.200) 

where Pij are the elements of a matrix P = B* K (rd. 
n 

We find the maximum of expression L (LOiYOi), having determined YOi 

from the following conditions: 

YOi = YiM, if LOi > 0, 

YOi = Yim, if LOi < o. 

i=1 
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n 

Let rik be the values of time in which the integrand LPijLkj reverses 
j=1 

sign. 
The maximum value of the first term in right-hand side of (10.200) is 

determined from the formula 

(10.201) 

Either the function Mi or mi depending on the sign of the function 

(10.202) 

will be under the integral on each of the intervals from ti,k to t i,k+l. 
If on the interval (ti,k, ti,k+l) Oi > 0, there will be Mi under the integral 

in the right-hand side of expression (10.201), and if Oi < 0, mi will be there. 
The presented method enables us to determine not only the maximum 

value of J1 , but also the worst variation law of the function Ii- If the bound­
aries ofthe areas of possible values of Ii are independent oftime, i.e. Ii = ±ai, 
the expression for the maximum value of J1 takes the form 

n tk n 

J1 = ~ai! IOil dri + m ~LOiYOi. 
,=1 0 t=1 

(10.203) 

When determining the maximum value of J1 , we established the variation 
laws of the functions Ii that give a maximum value to J1• If to include these 
laws in expression (10.25), some vector y will be obtained. Will it be inside 
the area of possible values or only touch its surface? 

If the vector y for the found laws Ii is inside the area of possible values, 
it means that the maximum of the functional J1 is reached on the internal 
vectors y; if this vector only touches the surface bounding the area, the 
maximum is reached on the vectors which determine the limit surface of the 
deviations area. 

Let us show that the maximum value of the linear functional J = (Lk . Yk) 
is reached on the vectors which define the limit surface of the area of possible 
values of the system state vector. To make it clearer let us consider the 
particular case of the vector Yk having two components. Here the area of 
possible values is bounded by a flat curve on the phase plane (Fig. 10.28). 

Let us assume that the maximum J = corresponds to the vector Yk 
(Fig. 10.28): 
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Fig. 10.2S. 

J = (Lk . Yk) = max. (10.204) 

Any vector Yk directionally coinciding in direction with the vector Yk max 

can be written as 

(10.205) 

where k is the scalar multiplier that varies from zero to unity. 
Substituting Yk into expression (10.204), we obtain 

J = k (Lk . Yk max) . (10.206) 

It follows from expression (10.206) that for any vector Yk directionally 
coinciding with the vector Yk max the value of the functional J for a given 
angle can only be smaller than that for the vector Yk max that determines the 
boundary of the area, as was to be shown. 

Let us determine the maximum value of the linear functional in the case 
of several sections of motion being available. We shall consider the motion 
of a system on the interval (0, tk) when there are several of time intervals 
(ti' ti+d on which the action of different random excitations fi occurs while 
the dimensionality of the vectors fi may differ (their dimensionality consid­
ered to be smaller than that of the equations of motion of the system). Let 
us, first, consider a case where the dimensionality of the equations of mo­
tion of the system is the same on all intervals of motion. We shall begin our 
consideration with determining the maximum value of the functional J at 
the end of motion (at t = tk), with this value being depends on all stages of 
motion. On each of the time intervals embracing the action of the vector of 
random excitations fi' the equation of motion is 

(10.207) 

where n is the number of sections. 
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tk 

Let us connect linear functional (10.196) J = ! (L . Bf) dT + (Lo . Yo) 

o 
with the n-th {last) section of motion: 

tkn 

I n = ! (Ln' Bnfn ) dT + (Lon' YOn)' 

o 

(10.208) 

The value of Ln (tkJ is known, therefore it is possible to find Ln (0) from 
equation (10.134). 

In its turn, the scalar product (Ln (0)· Yn (0)) represents the value of the 
functional on the previous section of motion, i.e. 

tkn_l 

(Lon' YOn (0)) = ! (Ln - l · Bn-lfn - l ) dT + (LOn-I' YOn-l (0)), (10.209) 

o 

and so on, therefore it is possible to obtain the expression for the functional 
dependent on the motion of the system on the whole interval (0, tk): 

n tki 

J = L ! (Li . Bifi ) dT + (LOl . Yl (0)) , 
.=1 0 

(10.210) 

where LOb Yl (0) are the values of the vectors Ll and Yl in the beginning of 
the first interval of motion. 

The maximum value of functional (10.210) is 

n 

where Ltki = tk' 
i=l 

(10.211 ) 

The method of determining the maximum value of each of the terms 
entering into the right-hand side of expression (10.210) is presented above. 

A mechanical system with the varying dimensionality of a state vector 
Y is shown in Fig. 10.29. A body moves along a rod and comes into contact 
with it in two points: A and B. In the beginning of the motion of the system 
the latter has one degree of freedom (Fig. 10.29 a), and after the loss of the 
contact of the forward support (point) the system has two degrees of freedom 
(Fig. 10.29 b). There are also mechanical systems with the dimension of the 
vector Y on the first section of motion being greater than that on the second 
one (Fig. 10.21). 
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Fig. 10.29. 

Let us consider a system involving two sections of motion, and for the pur­
pose of definiteness we assume that the dimensionality n of the state vector 
Yl on the first section of motion is greater than the dimensionality v of the 
vector Y2. Then we shall consider the second section of the system's motion 
of and some vector L2 connected with this section and having the dimension­
ality of the vector Y2' The vector L2 satisfies adjoint equation (1O.194) . On 
the second section of motion there is a functional 

tk-tk-l 

J2 = I (L2 · B 2 f2 ) d-r + (L02 . Y2 (O)) , 
o 

where tkl is the time of the systems motion on the first section. 

(10.212) 

The vector Y2 (O) is equal to the vector Yll at the end of the first section, 
where Yll is a vector with components that retain their value on the second 
section, i.e. the vector Y2 represents a continuation of the vector Yll' Since, 
under the condition of the problem, the vector Yl has the dimensionality n 
(that is greater than that of the vector Y2), then at t = tkl 

(10.213) 

The vector Y12 has the dimensionality n - v. 
The vector L2 (O) is determined from the solution of the following equation 

dL2 A* 
d-r + 2L2 = 0, (10.214) 

At -r = 0 the vector L2 is given. 
Let us introduce the vector Llk with n components 

_ [L2 (O)] 
Llk - . 

o 
(1O.215) 

The vector Lu is initial values vector for the equation 

dL1 A*L 
d-r + 1 1 = 0, (1O.216) 
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At r = 0 Ll = Llk. Let us present the vector Yl (tkl) as 

(10.217) 

and consider the scalar product (Llk . Ylk) which, according to (10.215) and 
(10.217), is 

(10.218) 

In its turn, scalar product (10.218) is a functional connected with the first 
section of motion, i.e. 

tkl 
Jl = (Llk . Ylk) = f (Ll . Blfd dr + (LOI . Yl (0)), 

o 

(10.219) 

therefore, we finally obtain the expression for the functional J for two sections 
of motion 

J = Jl (LI . Blfl ) dr+ tk]tkl (L2 . B2f2) dr + (LOl . Yl (0)). 

o 0 

10.9 Maximum Value of a Linear FUnctional at 
Dependent Excitations 

(10.220) 

Let us determine the maximum value of a linear functional at dependent 
random excitations satisfying condition (10.23). 

It is required to find the maximum of the following functional 

tk 
J = f (L· Bf) dr + (Lo · Yo). 

o 

A vector of excitations f can be written as 

f = H(t)fo, 

(10.221) 

(10.222) 

where H (t) is the diagonal matrix with continuously time-dependent ele­
ments; fo is the vector, whose components satisfy the condition 

The components of the vector Yo satisfy a similar condition 
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(CoYoYo) :S 1. 

Having used Lagrangian multipliers, we obtain a functional of the form 

tk J A ~ 
J l = (L· BHfo) dr+ (Lo . YO)-"2 [(ClfO . fo) - 1]-"2 [(CoYo . Yo) - 1] = o. 

o 
(10.223) 

Since L = KLo, we have 

tk 

J l = / [(BH)* KLo· fo] dr + (Lo . Yo) - ~ [(ClfO· fo) - 1]-

o 

- ~ [(CoYo . Yo) - 1] = O. (10.224) 

Functional (10.224) is similar to expression (10.106) for the projection of 
the state-of-the-system vector onto the arbitrary direction determined by a 
vector el. Therefore its maximum value is 

J lmax = A +~, (10.225) 

where 

tk 

A2 = (Cl l DLo· DLo); D = / (BH)* K dr; ~2 = (CIlLo· Lo). 

o 

Let us consider the case of the components Ii of the vector of excitations 
being random discontinuous functions bounded in absolute value, as, for ex­
ample, independent random excitations (see Fig. 10.1). Here it is possible to 
present the vector f as 

f = H (t) S (t) fo, (10.226) 

where H (t) is the diagonal matrix similar to the matrix entering in (10.222); 
S is the diagonal matrix whose elements are unit discontinuous functions 
8ii (t) . 

The latter can take values ± 1 with the instants of their discontinuity being 
random. Physically it means that the components Ii can instantaneously 
reverse the sign at random time instants, while the components of vector 
(10.222) vary in time continuously. Condition (10.23) for vectors (10.226) is 
modified to the form 

(Cl (t)fo, fo):S 1, (10.227) 

where 
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GI (t) = (HS)'" G (t) (HS). 

If the matrix G (t) is diagonal, the matrix G I (t) is diagonal too. For example, 
for the case of the vector f having three components the matrix G I (t) is 

h~l 0 0 
Ifl!ax 

h~2 
GI (t) = 0 

Ifl!ax 
0 

h~3 0 0 
/fl!ax 

where hii are the elements of the matrix H. 
In this special case (when the matrix G (t) is diagonal) condition (10.227) 

does not depend on Sii, as S~i' that are equal to unity enter into the elements 
of the matrix GI (t). 

Linear functional (10.223) with due account of (10.226) takes the form 

tic 

JI = J (L· BHSfo)dr + (Lo . Yo) - ~ [(GlfO . fo) - 1] 
o 

- ~ [(Goyo· Yo) - 1]. 

The maximum value of JI (10.228) is 

(10.228) 

(10.229) 

but as opposed to similar expression (10.225) the Lagrangian multiplier Am 
is determined with due account of the possible discontinuous variation of the 
components of the vector f in time. 

Depending on the discontinuous variation of fj in time, the Lagrangian 
multiplier A can take different values. Among the possible discontinuous vari­
ations of fj, however, there are such laws of variation, at which A reaches its 
maximum value. For this value of A the notation Am is introduced. Let us 
determine Am considering expressions for the square of the Lagrangian mul­
tiplier (explanation to (10.225)) 

A;' = (GlIb. b) , (b = nCO)Lo) , (10.230) 

where 

tic 

nCO) = J (BHS)* K dr. 

o 

The elements b~~) and dij of the matrixes B(l) = (BHS)* and D = BK 
are respectively equal to: 
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Therefore, the components of the vector b are 

(10.231) 

as the matrix ell is diagonal and its elements are positive, the maximum 
value of quadratic form (10.230), or, what is the same, of the square of the 
Lagrangian multiplier Am, is reached when the components of the vector b 
take their maximum values, which occurs at the following variation laws of 
functions: 

(m) _ { 1, 
skk - -1 

where 

, 
at gk > 0, 
at gk < 0, 

(10.232) 

The time instants Tp, when the functions Skk reverse the sign (the points 
of discontinuity), are determined from conditions 

(10.233) 

Having determined sk';:), we find a vector f~m) that corresponds to these 
laws. When determining the maximum value of JI condition (10.107) is used 

which in the considered problem results in the following relationship 

tk J (BHS)* KLdTo - Amelf~m) = O. (10.234) 

o 

Having determined the maximum value of Am and the variation laws of 
the unit functions sk';:) (10.232), we find the vector fJm) 

(10.235) 
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The vector f(m) at which functional J (10.221) with due account of the 
discontinuous variation of components Jjm) in time reaches its maximum 
value is 

(10.236) 

Let us consider a case where during the motion of the system on different 
time intervals act different random excitations bounded in absolute value and 
satisfying the following conditions 

(10.237) 

where the index j corresponds to the j - th interval of the motion of the 
system. The time instants of the beginning (tOj) and end (tkj) of the in­
tervals are known. Let us confine ourselves to the case of the dimensional­
ity of the system state vector remaining unchanged on all intervals of mo­
tion. Let us determine the maximum value of the linear functional J for 

the time instant tk (tk = j = 1 E tkj ) with due account of the excitations 

J(j) (j = 1,2 ... m) that act on the system and satisfy conditions (1O.237). 
For each of the intervals of motion (tOj, tkj) we can obtain a functional 

similar to (10.221) 

tk 

J(j) = J (8{j) D(j)*L(j) . fd j ») dT1 + (L(j) . y~») , 
o 

where 

It is possible to present the expression for the functional J{j) as 

tkj 

J(j) = J (8(j) D(j)*L(j) . fd j ») dT1 +J(j-1), 

o 

where 

tkj-l 

(10.238) 

(10.239) 

J(j-l) = J (8(j-1) D(j-1)* L(j-1) . fd j - 1») dTl + (L(j-l) . y~j-l») . 
o 

(10.240) 
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Let us confine ourselves to the case of one random vector f(j) acting on 
each of the sections. 

The vectors L~), entering into (10.238), are determined from the following 
equations (at T1 = tkj) 

(10.241 ) 

The value of the vector L~) is known (at the end of the jth section of 

motion), which allows us to determine the value of the vector L~j) 

L(j) - K· (t .) L(j) o - J kJ k' (10.242) 

representing the value of the vector (L (j -1») at the end of the previous section 
of motion 

L (j-1) - L(j) 
k - 0 . (10.243) 

For the last section of motion we have 

tk>-n 

J(m) = ! (s(m) D(m)*L(m) . fJm») dT1 +J(m-1). (10.244) 

o 

Sequentially eliminating J(m-1) from (10.244) (with the use of recurrent 
relationship (10.239)), we obtain 

tkj 

J = f ! (S(j) D(j)*L(j) . fJj») dT1 + (L~l) . y~l»). 
J=10 

(10.245) 

The integrals entering into the right-hand side of (10.245) contain the 
vectors L(j) which satisfy equations (10.241). The solution ofthese equations 
can be obtained, if we know the value of the vector L(j) at T1 = 0, i.e. if 
the values of L(j) are known. Only the vector Lim) is known among the vec­
tors L(j). This is quite sufficient, however, for the obtainment, by sequential 
calculations, of the values of the integrals for each of the sections, beginning 
from the last one. Solving equation (10.241) at j = m, we obtain L~m) that 

is equal to the initial values vector Lim - 1)intended for the solution of this 
equation on the previous interval of the systems motion, etc. 

As on each of the sections of motion of the system the vectors fJj) satisfy 
conditions (10.237) 

(c(j)fcij ) . faj») 1 (j = 1, 2, ... , m), 
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then, without performing intermediate transformations during the determi­
nation of the maximum value of J1 (similar to those considered earlier in the 
case of one section of the systems motion), we obtain 

m 

J1 max = J-L + L Aj, 
j=1 

where 

tkj 

b(j) = ! S(j) D(j)*L(j)dT, V(j) = (B(j) H(j) r K j . 

o 

(10.246) 

(10.247) 

The greatest possible value of the functional J1 will be reached at maxi­
mum Aj, which occurs at the following variation laws of the unit discontinuous 
functions s(j) kk 

S (j) _ { 1 
kk -

-1 

at 

at 

C~1 dklllOllhkk) > 0; 

C~1 dklllOllhkk) < O. 

(10.248) 

At the variation laws of the matrixes elements S(j), (10.248), the com­
ponents of the vectors b(j) are equal to their greatest possible values and 
with the diagonal matrix (C(j)) -1 having positive elements we obtain the 
maximum values of A(j). Therefore we finally obtain 

m 

J1max = J-L+ LAjmax. 

j=1 

(10.249) 

10.10 Vibration Protection of Mechanical Systems 

In the introduction to this textbook we considered an automobile moving 
along a road with random irregularities and an airplane running on an aero­
drome pavement characterized by random asperities (Fig 0.1 a, b) to illus­
trate the impact of vibrations that arise in the context of randomness. The 
acceleration and braking of the automobile and the airplane cause random 
vibrations that can be quite strong. These vibrations are fraught with the 
failure of control systems and to prevent it different measures of vibration 
protection are used in them for instruments. 
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x 

b) 

Fig. 10.30. 

Figure 10.30 a shows a special-freight automobile very vulnerable to great 
overloads or shock loads resulting from a breakdown in the suspension during 
acceleration or braking. 

That is why an additional vibration protection system is used between 
the vehicle and the freight to diminish overloads and do not let the masses 
ml and m2 collide with each other at the suspension's break-down. 

The need for the protection of instruments also arises during the active leg 
of the flight trajectory of a rocket (Fig. 10.31). Random perturbations that 
act on the rocket include those depending on the operation of the engine, e.g., 
the random angular misalignment of the thrust (t:), the linear misalignment 
of the thrust (e) and the scatter of the thrust (LlR), which cause random 
inertia forces components acting on the mass m (instrument). As a result 
random vibrations of the mass m turn up. For the instrument to operate 
normally it is necessary that the displacements of the mass m do not lead 
to its collisions with the body of the rocket For example the displacement 
of the mass must be within the area shown in Fig. 10.31 by the dotted line. 
Methods making it possible to determine the two-dimensional areas of the 
possible values of state vector components at a given instant of time are 
presented in Sects. lOA, 10.5 and 10.6. Therefore the vibration protection 
system of the instrument should be designed in such a way as to prevent 

Fig. 10.31. 
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the mass m from colliding with the rocket's body. Other operation quality 
criteria of vibration protection systems are also possible. For instance, the 
values of linear functionals depending on the component of the state vector 
of the system at a given instant of time must not exceed the given values (the 
relevant theory is set forth in Sects. 10.7 and 10.8). 

Vibration protection systems that do not use power sources are usually 
referred to as passive and embrace absorption systems without feedback. Be­
low we shall discuss mechanical systems with a passive vibration protection 
of instruments and transported freights. Passive vibration protection systems 
have become extremely popular because they constitute very simple struc­
tures. As a rule, they consist of elastic and dissipative elements. Fig. 10.30 
shows passive vibration protection devices (shock absorbers) made of elastic 
elements and of viscous-friction ones (stiffness of elastic elements is denoted 
by c and viscous-friction coefficient is indicated by Q). 

However, passive vibration protection systems have a disadvantage: they 
function effectively (at c and Q chosen by calculations) only at certain per­
turbations. 

If the perturbations change, e.g. the frequency range for determined per­
turbations or spectral densities for random perturbations change, we have 
to determine new appropriate values of c and Q to make the performance of 
shock absorbers effective. 

Vibration protection systems using feedback (active vibration protection 
systems at determined perturbations) are free of this drawback as the control 
system of the vibration protection device realizes a continuous variation in c 
and Q at a continuous variation in perturbations, which allows the vibration 
protection system to operate effectively all the time. 

It is very difficult to analyze vibration protection systems (passive and 
particularly active ones) at random perturbations during non-steady (non­
stationary) processes even in cases when we have all necessary information 
about random perturbations. In addition to this, probabilistic estimations 
of vibration protection systems are not always acceptable. For example, 
when transporting dangerously explosive freights, where collisions between 
the freight and the vehicle are impermissible, the probability of motion of the 
system without collisions obtained by calculations, however small it may be, 
does not guarantee the absence of collisions at a particular process realization. 
The probabilistic estimation of the possibility of collisions is advantageous for 
making comparisons of different designs of vibration protection systems. The 
design of a vibration protection system that has the smaller probability of 
collisions can be considered more appropriate. One cannot, however, be sure 
of the absence of collisions. 

Therefore, the probabilistic methods of analysis of vibration protection 
systems that must guarantee the fulfilment of quality criteria, for example, 
the absence of collisions between the instrument (freight) and the foundation 
are not always acceptable. If we have no necessary statistical information 
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about random perturbations (this is most abundant case) it is impossible to 
analyze vibration protection system using methods of statistical dynamics. 
Therefore we must use a theory and methods that allow us to determine 
by calculation numerical values of parameters of vibration protection design 
(for example, C and a) in conditions of uncertainty of acting perturbations. 
The methods presented in the above mentioned paragraphs are some of such 
methods of analysis of dynamic processes that are used when there is no 
statistical information about random perturbations. 

Let us formulate a problem of passive vibration protection, bearing in 
mind mechanical systems presented on Fig. 10.30 and 10.31. Random contact 
forces fj induced by the random irregularities are acting on a moving vehicle 
with a freight (Fig. 10.30). To make it easy to grasp let us confine ourselves 
by a case where vibrations occur in the plane of the drawing. The mass m 
(Fig. 10.31) is acted by a random inertia force linearly dependent on the small 
misalignments c and e and on the small scatter of the thrust LlR. In both cases 
we have mechanical systems with a finite number of degrees of freedom. In 
the problem of transportation (Fig. 10.30) the vibration protection system 
of the freight must guarantee the absence of collisions between the freight 
and the vehicle during the time intervals corresponding to acceleration and 

braking. This means that the mutual approach of points (K3' K~I») and 

( K4 , K!I») must not exceed the allowable value. An indispensable condition 

for a rigidly fixed freight is that the mutual approach of points K2 and K~I) 
of the mass m and the body of the vehicle (Fig. 10.30 b) also does not exceed 
allowable values. 

We need to obtain such numerical values of parameters of the vibra­
tion protection system (Cj, aj) at which there are no collisions during the 
time intervals corresponding to acceleration or braking, when we have certain 
limitations on the random irregularities of the road and on the velocity of 
transportation v. As to the vibration protection of the mass m (Fig. 10.31), 
our task is to determine such values Cj, aj at which the displacements of the 
point 0 would be inside the given area during the interval of the motion on 
the active leg under the action of random inertia forces depending on c, e 
and LlR. 

Let us consider a mechanical system with a finite number of degrees of 
freedom whose motion is described by a non-homogeneous linear equation of 
the following type 

(10.250) 

where Y = (Yl, Y2, ... , Yn)T is a vector whose components are generalized 
linear and angular coordinates; f(l) is a vector whose components are ran­
dom forces and moments; Aj and D(I) are matrices whose elements in the 
general case can be both constant numbers and known functions depending 
on time (e.g., for mechanical systems with a variable mass). The term A2 Y 
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takes forces of viscous friction into account. The elements of the matrix A3 
depend on the characteristics of elastic elements and on the parameters of 
the vibration protection system (Cj, OJ) . 

Assuming Y = ZI and Y = Z2 we obtain an equation similar to that of 
(10.24), 

Z + A(t, A)Z = D (t) f, (10.251) 

where 

_ [f(I)] 
f - 0 ' 

A is a vector whose components are the parameters of the vibration protection 
system. 

The information about random functions (i.e., about components I?) of 
vector f(1) necessary for the implementation of statistical dynamics is not 
available. We know only the areas of the possible values of random functions, 
i.e. IP) are random functions bounded in absolute value. Random perturba­

tions I?) can be independent or dependent. 

For independent perturbations the components of the vector I?) satisfy 
conditions (10.18) (Fig. 10.32) 

(10.252) 

In a specific case max Ij and min fJ can be constant, including an equality 
in absolute value 

(10.253) 

During the motion of an automobile on a road with random irregularities 
the forces fJ depend on the height of the irregularities h (x) (x = vt). If we 

Fig. 10.32. 
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consider the irregularities of a road relative to its average state, then the area 
of possible values h(vt) is similar to that presented in Fig. 10.32. 

If we tackle a more complex problem where spatial vibrations arise at the 
motion of a vehicle, the equations of the small vibrations of a vehicle with 
a freight will contain projections of contact forces that are dependable and 
therefore meet conditions (10.22) 

(10.254) 

The equations of small vibrations of the mass m (Fig. 10.31) relative to 
the body of the rocket will include projections of the random inertia force f 
that are equal to the sum of three terms dependent on each of the random 
perturbations €, e, i1R (fz, fe, f L1R ) meeting conditions similar to those of 
(10.254). The equation of small vibrations of the mass m relative to the body 
of the rocket is similar to equation (10.251). For the point mass m vector Y 
has six components. 

In order to determine the numerical values of parameters Ci and ai of a 
vibration protection system at which collisions will be absent, let us determine 
the projections of area D of the possible displacements of the mass m at an 
instant tK on three coordinate planes (YIOY2), (y10Y3), (Y20Y3). The algorithm 
of determination of two-dimensional areas for dependent and independent 
perturbations is presented in paragraphs 10.4 and 10.6 respectively. 

If the two-dimensional projections of area D are inside of the projection 
of area Do of the allowable values of the state vector Y (tk) on coordinate 
planes, then Ci and ai guarantee the absence of collisions during the interval 
(0, tK) of the system's motion. 

We can minimize area D by varying parameters Cj, aj of the vibration 
protection system. This area is denoted by D* and is presented in Fig. 10.33 
by dotted line. The appropriate values of c; and a; can be considered optimal. 

Fig. 10.33. 
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Fig. 10.34. 

Let us consider a mechanical system with three degrees of freedom shown 
in Fig. 10.34 as an example of the numerical determination of values C3, U3 of 
the parameters of a passive vibration protection system of the weight (mass 
m3). This is not very important in the practical plane but it allows us to 
show the algorithm of the numerical analysis applied to the passive vibration 
protection of objects under non- stationary vibrations of systems with a finite 
number of degrees of freedom at random perturbations bounded in absolute 
value. 

For the example considered we obtain an equation of small vibrations 

(10.255) 

where 

r(1) = (h 0 O)T " , r(2) = (0 h O)T " , 

U1 + U2 U2 
0 

m1 m2 

A(1) = U2 (U2 + (3) U3 

m2 m2 m2 

0 
U3 U3 

m3 m3 
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Cl +C2 C2 
0 

ml m2 

A(2) = C2 Cl +C2 C3 -----
m2 m2 m2 

0 
C3 C3 

m3 m3 

D(I) = [~I ~~] , 
o 00 

[0 al 0] 
D (2) _ ml 

- 0 0 0 . 
000 

Letting Y = ZI, Y = Z2 we obtain 

Z + AZ = Df + D2f2, 

where 

fl = (f{l), 0) T , 

= [A (I) A (2)] 
A -E 0 ' 

_ [D(2) 0] 
D2 - 0 0 . 

(10.256) 

At the initial instant of time the system was at rest. Then it began to 
move with an increasing velocity v (acceleration) up to the value v = VK at 
an instant t = t K. It is necessary to determine C3 and a3 at which masses m3 

and m2 would not collide with each other during the interval of time (0, tK) 
corresponding to the acceleration. 

The solution of equation (10.256) is of the form 

t t 

Z = ! G(t,r)Dlfldr+ ! G(t,r)D2f2dr. (10.257) 

o 0 

From (10.257) we obtain ZI and Z2 at an instant tK 

tK tK 

ZI = ! GllD(I)f(l)dr + ! Gu D(2)f(2)dr, (10.258) 

o 0 
tK tK 

Z2 = ! G2ID(I)f{l)dr + ! G21 D(2)f(2)dr, (10.259) 

o 0 

where Gu and G21 are block matrices entering in matrix G. 
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After transformations we obtain from (10.259) 

(10.260) 

The derivative of road irregularities with respect to time (h) enters in expres­
sion (10.260) and we have no information about this derivative. Therefore, 
using integration by parts, let us present terms containing h in the form 

(10.261 ) 

As a result we obtain 

(10.262) 

The Green matrix at t = tk is equal to identity matrix, therefore 

Expressions (10.262) contain derivatives of Green matrix elements (951 
and 96d that can be obtained in the following way. 

Let us consider an identity 

K (t) K- 1 (t) = E. (10.263) 

Taking derivatives with respect to t we obtain 

KK- 1 + KK- 1 = O. 
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By eliminating k (the matrix K meets equation k + AK = 0) we obtain 

-A+Kk-1 = o. (10.264) 

Let us mUltiply equation (10.264) from left by matrix K- 1 and by matrix 
K(tK) 

K (tK) k-1 - K (tK) K-1A = 0, 

or 

where G (tk' t) is the Green matrix. 
Therefore gS1 and g61 are equal to 

6 

gS1 = L 9Sj aj 1, 

j=1 

6 

g61 = L96jaj1. 

j=1 

(10.265) 

(10.266) 

In order to determine the area of possible values of Y2 and Y3 at an instant t K 
let us determine h (7) at which functional J (10.63) attains maximum value 
for a given angle a 

tk 

m;;x J = Y2 cos a + Y3 sin a = ! (d1 cos a + d2 sina)h (7) d7 

o 

- (9S1 (0) cos a + 961 (0) sin a) ~h (0), 
m1 

where 

The maximum value of functional J is determined by an integral term. There­
fore a law of h (7) variation which for a given a produces values Y2 (tk) and 
Y3 (tk) corresponding to the boundary of the area is 

h ( ) = {maxh, at (d1 cosa + d2 sina) > 0, 
* 7 minh, at (d1 cos a + d2 sina) < o. (10.267) 

In order to avoid collisions between the masses m2 and m3 (Fig. 10.35) the 
following condition 
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-0.6 

Fig. 10.35. 

to + Y3 (t) - Y2 (t) > O. 

must be fulfilled. 

Y3 [m] 

(10.268) 

During the numerical solution the following quantities entering in equa­
tions were considered 

ml = 20 kg, m2 = 100 kg, m3 = 80 kg, Cl = 5 .104 N/m, 

C2 = 4 .104 N/m, C3 = 2 .104 N/m, al = 1.2 . IQ3Ns/m, 

a2 = 2.4 . 103 Ns/m, tk = 4 s, Ihmaxl = Ihminl = 0.15 m 

The areas of the possible values of Y2 and Y3 at an instant tk for a series of 
values of the coefficient of viscous friction force a~) (a~1) = 760, a~2) = 1560, 

a~3) = 3040) are presented in Fig. 10.35. 
The boundary between the values Y2 and Y3 at which collisions are absent 

and values Y2 and Y3 at which collisions are possible is determined by an 
equation of a straight line 

to + Y3 - Y2 = o. (10.269) 

For the case where to = 0.2 m this straight line is shown in Fig. 10.35 (it is 
denoted by a(1)). For a half-plane of the plane (Y2, Y3) that is situated to the 
left of the straight line a(1) an inequality 
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lo + Y3 - Y2 > 0, 

fulfills, i.e. there are no collisions. 
For a half-plane of the plane (Y2,Y3) that is situated to the right of the 

straight line a(1) an inequality 

fulfills, i.e. collisions are possible. 
In order to have no collisions the straight line a(l) must not intersect the 

area (Y2,Y3). 
In Fig. 10.35 the straight line a(l) intersects the areas obtained for the 

coefficients of viscous friction a~l) = 760 and a~2) = 1560 (the area of values 
of Y2 and Y3 for which collisions are possible is shown by hatching). For the 
area at a~3) = 3040 possible values Y2 and Y3 are situated to the left of the 
straight line a(l) i.e. for values C3 = 2 . 104 and a3 = 3040 collisions are 
excluded. 

The result obtained is true for any values I max hi = I min hi < 0.15 m. For 
the value l~l) = 0.28 m (straight line a(2») there would not be collisions at 

all values of a~j) because this straight line does not cross the area. And this 
result is guaranteed for the given irregularities of the road (h). 
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A.I Elementary Generalized Functions 

Dirac Delta Function 6. Let us consider a function (Fig. AI) 

(A.I) 

having the maximum value at t = 0 and decreasing at modulus It I growth. 
Let us transform the function P (t) by increasing its value at t = 0 by the 
factor m 

1 m 
PI (mt) = - [ ] . 

7r 1 + (mt)2 
(A.2) 

The functions Pl (mt) for several m are presented in Fig. A2. It can be shown 
that the integrals of the functions (1) and (2) are equal to unity, i.e. 

+00 +00 ! p(t) dt = 1, ! PI (mt) dt = l. 

-00 -00 

As m increases indefinitely (m 4 00) we obtain the function that is named 
as the Dirac delta function (Fig. A3): 

lim Pl(mt) = o(t). 
m-+oo 

Fig. A.I. 
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",<mt) 

t 

Fig. A.2. 

cf(t ) 

oCt-to) 

o t 

Fig. A.3. 

The principal properties of the Dirac delta function are: 

{ 
0 t < 0, 

l)<5(t) = 00 t = 0, 
o t > 0, 

2) aCt) = a( -t); 
00 

3) / a(t - to) dt = 1; 
-00 

{ 
0 t < to, 

a(t - to) = 00 t = to, 
o t > 0; 

1 
4) aCt) = a(ae) = ~a(e), 

where e is a dimensionless quantity. 

(A.3) 

The integrals containing the Dirac delta function and its derivatives are 

00 

/ c.p (t)a (t - to) dt = c.p (to) ; 

-00 
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00 00 ! cp (t)8 (t - to) dt = - ! ¢ (t)b (t - to) dt = -¢ (to), 
-00 -00 

where 8 is the derivative of the Dirac delta function. 
For the derivative of n-th order we obtain 

00 ! bn (t) cp (t) dt = (-It cpn(to). 
-00 

The derivatives of the Dirac delta function can be obtained (as easy-to­
grasp presentation) as a limit of the function derivatives, i.e. 

lim ~r(mt) = bn (t). 
m-too 

The Heaviside Function. The integral of the Dirac delta function with 
variable upper limit is 

t ! 15 (t - to) dt = H(t - to), 
-00 

where H(t) is the Heaviside function (Fig. A4). 
Differentiating (4) with respect to t we obtain 

dH(t - to) = 15 (t - to) . 
dt 

The Function signet) (Fig. A5) is 

t < to; 

t = to; 

t > to, 

{
It < 0; 

signet) = ~1 t = 0; 
t > 0; 

{
-I t < to; 

signet - to) = 0
1 

t = to; 
t> to; 

HCt-t,) 

to t 

Fig. A.4. 

(A.4) 

(A.5) 

(A.6) 
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slgn(t-t,> 

1 t--__ --

to t 

-:-1 

Fig. A.5. 

I t I 

t 

Fig. A.6. 

ds~~nt = 28 (t),· H(t) = ~(1 + signt). 

The function J(t) = It I (Fig. A6) is 

It I = tsignt; dJ:1 = signt; d;t~1 = 28 (t) . (A.7) 

A.2 Values of Integrals I n 

00 

J = ~ J G(iw) dw 
n 271' IA (iw)12 . 

-00 

where 

A (iw) = ao (iwt + al (iwt- 1 + ... + an; 

G ( .) b (. )2n-2 b (. )2n-4 b 
ZW = 0 zw + 1 ZW + ... + n-l; 
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J 5 =-2 A' 

aO~5 

where 
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aoa1b2 
-a2bo + aOb1 - --

J3=----~-------a73~ 
2aO(aoa3 - ala2) 

M5 = bo - (aOa4a5 + ala~ + a~a5 - a2a3a4) + aob1(-a2a5 + a3a4)+ 

+ aOb2(aOa5 - ala4) + aOb3( -aOa3 + ala2)+ 

aOb4 ( 2 2 ) + -b-- -aOala5 + aOa3 + ala4 - ala2a3 j 
4 a5 

.15 = a6a~ - 2aOala4a5 - aOa3a2a5 + aoa~a4 + a~a4 - ala2a3a4· 
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A.3 Correlation Functions and Spectral Densities 
Corresponding to Them 

Correlation functions 

K(r) 

r 

K{r) 

Doe - a l"'l (cOS.8T + ~ sin.8I T I) 

K(r) 

Spectral densities 

20:Do 

S(CJ) 

20:Do w2 + .82 + 0:2 

7r (w 2 - .82 - 0:2)2 - 40:2w2 

20:Do 0:2 + .82 

7r (w2 - .82 - 0:2)2 - 40:2W 2 

S(m) 
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Correlation functions 

K{r) 

K(r) = 211"808(r) 

K 

o 

K(,r ) 

Spectral densities 

Do 
- at Iwi < wf3 
w{3 

Oat Iwl > wf3 

S( aJ) 

o 

S(w) 

2Do { W2} - - exp - -
aft a 2 

S(w) 
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A.4 Hiawatha Designs an Experiment 

by Maurice G. Kendall 

1. Hiawatha, mighty hunter 
He could shoot ten arrows upwards 
Shoot them witli such strength and swiftness 
That the last had left the bowstring 
Ere the first to earth descended. 
This was commonly regarded 
As a feat of skill and cunning. 

2. One or two sarcastic spirits 
Pointed out to him, however, 
That it might be much more useful 
If he sometimes hit the target. 
Why not shoot a little straighter 
And employ a smaller sample? 

3. Hiawatha, who at college 
Majored in applied statistics 
Consequently felt entitled 
To instruct his fellow men on 
Any subject whatsoever. 
Waxed exceedingly indignant 
Talked about the law of error, 
Talked about truncated normals. 
Talked of loss of information, 
Talked about his lack of bias 
Pointed out that in the long run 
Independent observations 
Even though they missed the target 
Had an average point of impact 
Very near the spot he aimed at 
With the possible exception 
Of a set of measure zero. 

4. This, they said, was rather doubtful. 
Anyway, it didn't matter 
What resulted in the long run: 
Either he must hit the target 
Much more often than at present 
Or himself would have to pay for 
All the arrows that he wasted. 
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5. Hiawatha, in a temper 
Quoted parts of R.A. Fisher 
Quoted Yates and quoted Finney 
Quoted yards of Oscar Kempthorne 
Quoted reams of Cox and Cochran 
Quoted Anderson and Bancroft 
Practically in extenso 
Trying to impress upon them 
That what actually mattered 
Was to estimate the error. 

6. One or two of them admitted 
Such a thing might have its uses 
Still, they said, he might do better 
If he shot a little straighter. 

7. Hiawatha, to convince them 
Organized a shooting contest 
Laid out in the proper manner 
Of designs experimental 
Recommended in the textbooks 
(Mainly used for tasting tea, but 
Sometimes used in other cases) 
Randomized his shooting order 
In factorial arrangements 
Used in the theory of Galois 
Fields of ideal polynomials 
Got a nicely balanced layout 
And successfully confounded 
Second-order interactions. 

8. All the other tribal marksmen 
Ignorant, benighted creatures, 
Of experimental set-ups 
Spent their time of preparation 
Putting in a lot of practice 
Merely shooting at a target. 

9. Thus it happened in the contest 
That their scores were most impressive 
With one solitary exception 
This (I hate to have to say it) 
Was the score of Hiawatha, 
Who, as usual, shot his arrows 
Shot them with great strength and swiftness 
Managing to be unbiased 
Not, however, with his salvo 
Managing to hit the target. 
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10. There, they said to Hiawatha, 
That is what we all expected. 

11. Hiawatha, nothing daunted, 
Called for pen and called for paper 
Did analyses of variance 
Finally produced the figures 
Showing beyond peradventure 
Everybody else was biased 
And the variance components 
Did not differ from each other 
Or from Hiawatha's 
(This last point, one should acknowledge 
Might have been much more convincing 
If he hadn't been compelled to 
Estimate has own component 
From experimental plots in 
Which the values all were missing. 
Still, they didn't understand it 
So they couldn't raise objections 
This is what so often happens 
With analyses of variance). 

12. All the same, his fellow tribesmen 
Ignorant, benighted heathens. 
Took away his bow and arrows. 
Said that though my Hiawatha 
Was a brilliant statistician 
He was useless as a bowman, 
As for variance components 
Several of the more outspoken 
Made primeval observations 
Hurtfull to the finer feelings 
Even of a statistician. 

13. In a corner of the forest 
Dwells alone my Hiawatha 
Permanently cogitating 
On the normal law of error 
Wondering in idle moments 
Whether an increased precision 
Might perhaps be rather better 
Even at the risk of bias 
If thereby ore, now and then, could 
Register upon the target. 
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The sense of the poem lies in the fact that in the case when it is required to 
obtain the guaranteed final result it is impossible to replace it by its 
probability estimation. 
The theory and the numerical methods of the determination of guaranteed 
final results are presented in the last chapter 
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